Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 8 x + 47 x^{2} )( 1 + 12 x + 47 x^{2} )$ |
$1 + 20 x + 190 x^{2} + 940 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.698301488982$, $\pm0.839263688900$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $54$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3360$ | $4838400$ | $10719182880$ | $23837829120000$ | $52593651328864800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $2190$ | $103244$ | $4885118$ | $229321108$ | $10779249870$ | $506623142044$ | $23811290125438$ | $1119130420056548$ | $52599132542071950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=6 x^6+18 x^5+35 x^4+35 x^3+16 x^2+x+33$
- $y^2=38 x^6+15 x^5+23 x^4+29 x^3+38 x^2+19 x+11$
- $y^2=41 x^6+45 x^5+37 x^3+33 x+38$
- $y^2=14 x^6+18 x^5+13 x^4+18 x^3+35 x^2+12 x+42$
- $y^2=x^6+23 x^5+31 x^4+5 x^3+31 x^2+23 x+1$
- $y^2=36 x^6+30 x^5+23 x^4+10 x^3+21 x^2+11 x+25$
- $y^2=20 x^6+15 x^5+20 x^4+11 x^3+20 x^2+15 x+20$
- $y^2=42 x^6+10 x^5+16 x^4+15 x^3+16 x^2+10 x+42$
- $y^2=9 x^6+19 x^5+32 x^4+x^3+32 x^2+19 x+9$
- $y^2=4 x^6+21 x^5+26 x^4+13 x^3+26 x^2+21 x+4$
- $y^2=33 x^6+12 x^5+17 x^4+18 x^3+17 x^2+12 x+33$
- $y^2=32 x^6+20 x^5+39 x^4+36 x^3+22 x^2+31 x+18$
- $y^2=10 x^6+46 x^5+28 x^4+32 x^3+6 x^2+40 x+15$
- $y^2=17 x^6+39 x^5+9 x^4+24 x^3+12 x^2+38 x+2$
- $y^2=34 x^6+24 x^5+36 x^4+14 x^3+36 x^2+24 x+34$
- $y^2=18 x^6+17 x^5+38 x^4+x^3+38 x^2+17 x+18$
- $y^2=43 x^6+20 x^5+12 x^4+22 x^3+28 x^2+41 x+31$
- $y^2=21 x^6+11 x^5+41 x^4+41 x^2+11 x+21$
- $y^2=29 x^6+19 x^5+21 x^3+23 x+15$
- $y^2=34 x^6+4 x^5+25 x^4+42 x^3+23 x^2+35 x+30$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.i $\times$ 1.47.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.au_hi | $2$ | (not in LMFDB) |
2.47.ae_ac | $2$ | (not in LMFDB) |
2.47.e_ac | $2$ | (not in LMFDB) |