L(s) = 1 | − 2·3-s + 5-s + 4·7-s + 9-s − 2·15-s + 12·17-s − 8·21-s + 25-s + 4·27-s + 4·35-s − 20·43-s + 45-s − 2·49-s − 24·51-s + 12·53-s − 24·59-s + 4·61-s + 4·63-s + 4·67-s + 24·71-s − 2·75-s − 11·81-s + 12·85-s + 28·103-s − 8·105-s + 4·109-s + 12·113-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 0.516·15-s + 2.91·17-s − 1.74·21-s + 1/5·25-s + 0.769·27-s + 0.676·35-s − 3.04·43-s + 0.149·45-s − 2/7·49-s − 3.36·51-s + 1.64·53-s − 3.12·59-s + 0.512·61-s + 0.503·63-s + 0.488·67-s + 2.84·71-s − 0.230·75-s − 1.22·81-s + 1.30·85-s + 2.75·103-s − 0.780·105-s + 0.383·109-s + 1.12·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.335360080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.335360080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.749524176059453166876684221310, −9.703656252458157439228300963800, −8.536040373596851277524077678909, −8.407676785947288187996164912905, −7.64589778281564359800589548721, −7.47121424818625422471458115292, −6.43307814142801241380910059979, −6.21444115782927123192608967686, −5.30602566274475700528497955431, −5.19647848534431193907436500640, −4.82118726362395324834121081499, −3.71119793411816721603957340078, −3.07875775618643284846845606551, −1.81793015252092636076156145980, −1.10363850080882238424508077779,
1.10363850080882238424508077779, 1.81793015252092636076156145980, 3.07875775618643284846845606551, 3.71119793411816721603957340078, 4.82118726362395324834121081499, 5.19647848534431193907436500640, 5.30602566274475700528497955431, 6.21444115782927123192608967686, 6.43307814142801241380910059979, 7.47121424818625422471458115292, 7.64589778281564359800589548721, 8.407676785947288187996164912905, 8.536040373596851277524077678909, 9.703656252458157439228300963800, 9.749524176059453166876684221310