Properties

Label 400.c
Number of curves $4$
Conductor $400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 400.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 400.c do not have complex multiplication.

Modular form 400.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + 2 q^{7} + q^{9} - 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 400.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
400.c1 400e3 \([0, 1, 0, -1033, 12438]\) \(488095744/125\) \(31250000\) \([2]\) \(144\) \(0.42408\)  
400.c2 400e4 \([0, 1, 0, -908, 15688]\) \(-20720464/15625\) \(-62500000000\) \([2]\) \(288\) \(0.77065\)  
400.c3 400e1 \([0, 1, 0, -33, -62]\) \(16384/5\) \(1250000\) \([2]\) \(48\) \(-0.12523\) \(\Gamma_0(N)\)-optimal
400.c4 400e2 \([0, 1, 0, 92, -312]\) \(21296/25\) \(-100000000\) \([2]\) \(96\) \(0.22134\)