L(s) = 1 | + 2-s + 3-s − 4-s + 6-s + 4·7-s − 3·8-s + 9-s − 12-s + 4·14-s − 16-s + 18-s + 4·19-s + 4·21-s − 3·24-s + 10·25-s + 27-s − 4·28-s − 4·29-s + 5·32-s − 36-s + 4·38-s − 8·41-s + 4·42-s + 8·43-s − 48-s + 2·49-s + 10·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s + 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.288·12-s + 1.06·14-s − 1/4·16-s + 0.235·18-s + 0.917·19-s + 0.872·21-s − 0.612·24-s + 2·25-s + 0.192·27-s − 0.755·28-s − 0.742·29-s + 0.883·32-s − 1/6·36-s + 0.648·38-s − 1.24·41-s + 0.617·42-s + 1.21·43-s − 0.144·48-s + 2/7·49-s + 1.41·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.301589017\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.301589017\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.698939056102647300872667163861, −8.441340065360205641188252518872, −7.978503853500202863289244441111, −7.32870315235511902958617857536, −7.13592049138550436112422074744, −6.36274198426465621472588450557, −5.75050995403316761441828087498, −5.20359902733101892504815780523, −4.92750562920968109525010541081, −4.42854748229958997474130460290, −3.89170606720577417272709640939, −3.21092788071506759254105051118, −2.73994196620849392373383277329, −1.83115779446539369074597003093, −1.00697571581039880902660971444,
1.00697571581039880902660971444, 1.83115779446539369074597003093, 2.73994196620849392373383277329, 3.21092788071506759254105051118, 3.89170606720577417272709640939, 4.42854748229958997474130460290, 4.92750562920968109525010541081, 5.20359902733101892504815780523, 5.75050995403316761441828087498, 6.36274198426465621472588450557, 7.13592049138550436112422074744, 7.32870315235511902958617857536, 7.978503853500202863289244441111, 8.441340065360205641188252518872, 8.698939056102647300872667163861