Invariants
    This isogeny class is not simple,
  
    primitive, 
  
    ordinary,
  
    and not supersingular.
  
    It is principally polarizable and
  contains a Jacobian.
    
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
  
    | $r$ | 
                 $1$  | 
                 $2$  | 
                 $3$  | 
                 $4$  | 
                 $5$  | 
            
  
  
    | $A(\F_{q^r})$ | 
                 $1008$  | 
                 $774144$  | 
                 $591406704$  | 
                 $500220887040$  | 
                 $420592481649648$  | 
            
  
Point counts of the curve
  
    | $r$ | 
                $1$ | 
                $2$ | 
                $3$ | 
                $4$ | 
                $5$ | 
                $6$ | 
                $7$ | 
                $8$ | 
                $9$ | 
                $10$ | 
            
  
    | $C(\F_{q^r})$ | 
                $34$ | 
                $918$ | 
                $24250$ | 
                $707246$ | 
                $20505554$ | 
                $594799686$ | 
                $17250350186$ | 
                $500246284126$ | 
                $14507132140930$ | 
                $420707259474678$ | 
            
  
Jacobians and polarizations
      This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):
  - $y^2=12 x^6+22 x^5+22 x^3+22 x+12$
 
  - $y^2=16 x^6+17 x^5+19 x^4+18 x^3+3 x^2+22 x+18$
 
  - $y^2=9 x^6+6 x^5+26 x^4+10 x^3+7 x^2+2 x+10$
 
  - $y^2=17 x^6+24 x^5+6 x^4+21 x^3+4 x^2+x+19$
 
  - $y^2=21 x^6+9 x^5+5 x^4+28 x^3+22 x^2+26 x+7$
 
  - $y^2=x^6+13 x^5+24 x^4+6 x^3+5 x^2+13 x+28$
 
  - $y^2=18 x^6+13 x^5+28 x^4+23 x^3+28 x^2+13 x+18$
 
  - $y^2=21 x^6+2 x^5+4 x^4+27 x^3+3 x^2+5 x+18$
 
  - $y^2=2 x^6+10 x^5+6 x^4+6 x^3+22 x^2+14 x+22$
 
  - $y^2=4 x^6+4 x^5+27 x^4+23 x^3+27 x^2+4 x+4$
 
  - $y^2=22 x^6+23 x^5+14 x^4+17 x^3+4 x^2+25 x+2$
 
  - $y^2=26 x^6+24 x^5+21 x^4+27 x^3+12 x^2+25 x+21$
 
  - $y^2=26 x^6+18 x^5+21 x^4+7 x^3+17 x+25$
 
  - $y^2=11 x^6+10 x^5+12 x^4+15 x^3+2 x^2+16 x+21$
 
  - $y^2=5 x^6+21 x^5+13 x^4+24 x^3+x^2+10 x+6$
 
  - $y^2=28 x^6+13 x^5+26 x^4+23 x^3+18 x^2+20 x+4$
 
  - $y^2=6 x^6+27 x^5+6 x^4+17 x^3+7 x^2+15 x+20$
 
  - $y^2=14 x^6+22 x^5+16 x^4+27 x^3+26 x^2+16 x+25$
 
  - $y^2=6 x^6+16 x^5+x^4+x^3+23 x^2+15 x$
 
  - $y^2=9 x^6+28 x^5+23 x^4+23 x^3+23 x^2+28 x+9$
 
  - and 84 more
 
  - $y^2=10 x^5+2 x^4+21 x^3+12 x^2+15 x+11$
 
  - $y^2=23 x^5+6 x^4+26 x^3+5 x^2+14 x+15$
 
  - $y^2=23 x^6+4 x^5+22 x^4+8 x^3+12 x^2+6 x+15$
 
  - $y^2=17 x^6+x^5+19 x^4+11 x^3+3 x^2+4 x+7$
 
  - $y^2=23 x^6+15 x^5+5 x^4+28 x^3+18 x^2+18 x+15$
 
  - $y^2=14 x^6+22 x^5+27 x^4+28 x^3+6 x^2+19 x+13$
 
  - $y^2=9 x^6+22 x^5+19 x^4+16 x^3+19 x^2+18$
 
  - $y^2=2 x^5+3 x^4+24 x^3+6 x^2+6 x+21$
 
  - $y^2=16 x^6+4 x^5+4 x^4+16 x^3+4 x^2+4 x+16$
 
  - $y^2=12 x^6+15 x^5+28 x^4+24 x^3+11 x^2+18 x+19$
 
  - $y^2=11 x^6+5 x^5+15 x^4+2 x^3+27 x^2+22 x+21$
 
  - $y^2=23 x^6+18 x^5+7 x^4+20 x^3+2 x^2+5 x+18$
 
  - $y^2=11 x^6+24 x^5+27 x^4+27 x^3+27 x^2+24 x+11$
 
  - $y^2=18 x^5+13 x^4+22 x^3+21 x^2+15 x+1$
 
  - $y^2=6 x^6+7 x^5+5 x^4+28 x^3+17 x^2+7 x+24$
 
  - $y^2=2 x^6+x^5+20 x^4+26 x^3+5 x^2+20 x+9$
 
  - $y^2=13 x^6+8 x^5+22 x^4+16 x^3+22 x^2+8 x+13$
 
  - $y^2=12 x^5+19 x^4+15 x^3+17 x^2+15 x+17$
 
  - $y^2=25 x^6+25 x^5+22 x^4+15 x^3+9 x^2+7 x+20$
 
  - $y^2=16 x^6+15 x^5+27 x^4+12 x^3+17 x^2+22 x+24$
 
  - $y^2=12 x^6+15 x^5+15 x^4+25 x^3+24 x+21$
 
  - $y^2=18 x^6+14 x^5+18 x^4+8 x^3+18 x^2+14 x+18$
 
  - $y^2=24 x^6+2 x^5+26 x^4+22 x^3+26 x^2+2 x+24$
 
  - $y^2=14 x^6+22 x^5+28 x^4+10 x^3+26 x^2+5 x+18$
 
  - $y^2=7 x^6+7 x^5+17 x^4+5 x^3+18 x^2+26 x+28$
 
  - $y^2=8 x^6+26 x^5+17 x^4+16 x^3+4 x^2+14 x+26$
 
  - $y^2=28 x^6+x^5+x^4+x^3+26 x^2+5 x+26$
 
  - $y^2=6 x^6+17 x^5+21 x^3+19 x+4$
 
  - $y^2=26 x^6+17 x^5+9 x^3+17 x+26$
 
  - $y^2=25 x^6+3 x^5+7 x^4+14 x^3+23 x^2+25 x+11$
 
  - $y^2=14 x^5+7 x^4+9 x^3+23 x^2+2 x$
 
  - $y^2=25 x^6+25 x^5+24 x^4+x^3+24 x^2+25 x+25$
 
  - $y^2=18 x^6+28 x^5+18 x^4+3 x^3+5 x^2+12 x+19$
 
  - $y^2=28 x^6+12 x^5+x^4+18 x^3+4 x^2+12 x+9$
 
  - $y^2=10 x^6+3 x^5+6 x^4+x^3+11 x^2+3 x+2$
 
  - $y^2=27 x^6+19 x^5+21 x^4+10 x^3+21 x^2+19 x+27$
 
  - $y^2=4 x^6+14 x^5+8 x^4+4 x^3+8 x^2+14 x+4$
 
  - $y^2=13 x^6+22 x^4+20 x^3+5 x^2+6$
 
  - $y^2=24 x^6+17 x^5+x^4+16 x^3+16 x^2+2 x+23$
 
  - $y^2=16 x^6+13 x^5+20 x^4+13 x^3+4 x+15$
 
  - $y^2=4 x^6+17 x^5+25 x^4+18 x^3+14 x^2+20$
 
  - $y^2=5 x^6+23 x^5+11 x^4+21 x^3+4 x^2+20 x+27$
 
  - $y^2=8 x^6+14 x^5+7 x^4+19 x^3+6 x^2+2 x+14$
 
  - $y^2=26 x^6+13 x^5+10 x^4+5 x^3+10 x^2+13 x+26$
 
  - $y^2=x^6+14 x^5+22 x^4+26 x^3+22 x^2+14 x+1$
 
  - $y^2=28 x^6+25 x^5+16 x^4+19 x^3+19 x^2+6 x+5$
 
  - $y^2=11 x^6+19 x^5+28 x^4+2 x^2+27 x+21$
 
  - $y^2=14 x^6+24 x^5+7 x^4+5 x^3+19 x^2+13 x+20$
 
  - $y^2=18 x^6+24 x^5+7 x^4+24 x^3+17 x^2+x+6$
 
  - $y^2=15 x^6+14 x^5+25 x^4+17 x^3+5 x^2+18 x+28$
 
  - $y^2=2 x^6+23 x^5+27 x^4+20 x^3+26 x+24$
 
  - $y^2=27 x^6+19 x^5+18 x^4+18 x^3+16 x^2+27 x+13$
 
  - $y^2=20 x^6+26 x^5+5 x^4+16 x^3+25 x^2+12 x+6$
 
  - $y^2=x^5+21 x^4+23 x^3+21 x^2+x$
 
  - $y^2=11 x^6+5 x^5+23 x^4+9 x^3+20 x^2+14 x+19$
 
  - $y^2=6 x^6+26 x^5+7 x^4+27 x^3+23 x^2+8 x+2$
 
  - $y^2=28 x^6+15 x^5+24 x^4+17 x^3+5 x^2+9 x+12$
 
  - $y^2=26 x^6+23 x^5+24 x^4+3 x^3+28 x^2+6 x+21$
 
  - $y^2=4 x^6+17 x^5+27 x^4+5 x^2+11 x+22$
 
  - $y^2=4 x^6+16 x^5+15 x^4+7 x^3+15 x^2+16 x+4$
 
  - $y^2=28 x^6+13 x^5+25 x^4+24 x^3+5 x^2+21 x+27$
 
  - $y^2=6 x^6+26 x^5+24 x^4+25 x^3+16 x^2+18 x+5$
 
  - $y^2=24 x^6+20 x^5+2 x^3+20 x+24$
 
  - $y^2=8 x^6+16 x^5+x^4+11 x^3+x^2+16 x+8$
 
  - $y^2=3 x^5+9 x^4+8 x^3+9 x^2+3 x$
 
  - $y^2=13 x^6+2 x^5+13 x^4+5 x^3+13 x^2+15 x+19$
 
  - $y^2=10 x^6+12 x^5+17 x^4+21 x^3+17 x^2+12 x+10$
 
  - $y^2=x^6+11 x^5+17 x^4+22 x^3+17 x^2+11 x+1$
 
  - $y^2=x^6+16 x^5+x^4+x^3+9 x^2+8 x+25$
 
  - $y^2=13 x^6+23 x^5+18 x^4+10 x^3+18 x^2+23 x+13$
 
  - $y^2=10 x^6+3 x^5+9 x^4+25 x^3+11 x^2+10 x+12$
 
  - $y^2=11 x^6+23 x^5+6 x^4+13 x^3+4 x^2+5 x+27$
 
  - $y^2=7 x^6+20 x^5+5 x^4+3 x^3+6 x^2+16 x+8$
 
  - $y^2=5 x^5+12 x^3+13 x^2+4 x+22$
 
  - $y^2=9 x^6+22 x^5+28 x^4+21 x^3+3 x^2+25 x+4$
 
  - $y^2=6 x^6+19 x^5+8 x^4+7 x^3+4 x^2+20 x+8$
 
  - $y^2=11 x^6+28 x^5+13 x^4+7 x^3+24 x^2+14 x+1$
 
  - $y^2=5 x^6+12 x^3+4 x^2+8 x+23$
 
  - $y^2=5 x^6+9 x^5+28 x^4+6 x^3+28 x^2+9 x+5$
 
  - $y^2=25 x^5+21 x^4+24 x^3+14 x^2+24 x$
 
  - $y^2=23 x^6+28 x^5+23 x^4+8 x^3+9 x^2+5 x+13$
 
  - $y^2=x^6+15 x^5+19 x^4+24 x^3+18 x^2+8 x+6$
 
  - $y^2=14 x^6+17 x^5+20 x^4+9 x^3+4 x^2+11 x$
 
  - $y^2=12 x^5+5 x^3+9 x^2+8 x+23$
 
  
 All geometric endomorphisms are defined over $\F_{29}$.
 
 Endomorphism algebra over $\F_{29}$
| The isogeny class factors as 1.29.ac $\times$ 1.29.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: 
 | 
Base change
This is a primitive isogeny class.
Twists
   Below is a list of all twists of this isogeny class.