L(s) = 1 | − 2·5-s + 4·19-s + 4·23-s − 7·25-s + 12·29-s − 4·43-s + 12·47-s − 5·49-s + 10·53-s − 20·67-s − 16·71-s + 2·73-s − 8·95-s − 2·97-s + 18·101-s − 8·115-s + 3·121-s + 26·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.917·19-s + 0.834·23-s − 7/5·25-s + 2.22·29-s − 0.609·43-s + 1.75·47-s − 5/7·49-s + 1.37·53-s − 2.44·67-s − 1.89·71-s + 0.234·73-s − 0.820·95-s − 0.203·97-s + 1.79·101-s − 0.746·115-s + 3/11·121-s + 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.99·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.401397445\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.401397445\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.554704477910262490194224105907, −8.352104784585146468182630520222, −7.67996846591970940803333630612, −7.25448367711369655898353657421, −7.15340015105356378963058851080, −6.23138020629374792100300833919, −5.98276615954030285758204092167, −5.32932694357691635729819844111, −4.71525232702415007486392238194, −4.34190910531857724149474492775, −3.74514947909231141400939990651, −3.11556422792398663255142778514, −2.66387606752889082799803334542, −1.64081961055094255152301138209, −0.68688623656136131006877383651,
0.68688623656136131006877383651, 1.64081961055094255152301138209, 2.66387606752889082799803334542, 3.11556422792398663255142778514, 3.74514947909231141400939990651, 4.34190910531857724149474492775, 4.71525232702415007486392238194, 5.32932694357691635729819844111, 5.98276615954030285758204092167, 6.23138020629374792100300833919, 7.15340015105356378963058851080, 7.25448367711369655898353657421, 7.67996846591970940803333630612, 8.352104784585146468182630520222, 8.554704477910262490194224105907