Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 53 x^{2} )^{2}$ |
$1 - 10 x + 131 x^{2} - 530 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.388420875603$, $\pm0.388420875603$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2401$ | $8357881$ | $22364604304$ | $62244825632521$ | $174853828992462361$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $2972$ | $150218$ | $7888596$ | $418115044$ | $22164058838$ | $1174713892228$ | $62259720194788$ | $3299763594842594$ | $174887468802193772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=23 x^6+45 x^5+38 x^4+47 x^3+27 x^2+35 x+18$
- $y^2=42 x^6+9 x^5+47 x^4+36 x^3+15 x^2+43 x+46$
- $y^2=11 x^6+37 x^5+33 x^4+34 x^3+35 x^2+49 x+50$
- $y^2=34 x^6+50 x^5+25 x^4+44 x^3+30 x^2+24 x+13$
- $y^2=25 x^6+33 x^5+13 x^4+24 x^3+52 x^2+8 x+45$
- $y^2=18 x^6+38 x^5+11 x^4+14 x^3+30 x^2+32 x+48$
- $y^2=17 x^6+36 x^5+4 x^4+30 x^3+12 x^2+34 x+8$
- $y^2=17 x^6+32 x^5+49 x^4+19 x^3+50 x+50$
- $y^2=8 x^6+38 x^5+47 x^4+40 x^3+37 x^2+17 x+30$
- $y^2=48 x^6+8 x^5+37 x^4+28 x^3+45 x^2+40 x+7$
- $y^2=52 x^6+45 x^5+x^4+18 x^3+5 x^2+10 x+31$
- $y^2=12 x^6+39 x^5+36 x^4+31 x^3+4 x^2+26 x+48$
- $y^2=36 x^6+48 x^5+50 x^4+47 x^3+21 x^2+24 x+47$
- $y^2=25 x^6+28 x^5+10 x^4+28 x^3+49 x^2+49 x+9$
- $y^2=38 x^6+45 x^5+24 x^4+x^3+39 x^2+10 x+11$
- $y^2=48 x^6+6 x^5+35 x^4+10 x^3+18 x^2+6 x+5$
- $y^2=18 x^6+37 x^5+46 x^4+24 x^3+27 x^2+32 x+32$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.af 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.