| L(s) = 1 | + 2-s + 4-s + 8-s − 12·11-s + 16-s + 12·17-s − 8·19-s − 12·22-s + 25-s + 32-s + 12·34-s − 8·38-s + 16·43-s − 12·44-s − 10·49-s + 50-s − 12·59-s + 64-s − 8·67-s + 12·68-s − 20·73-s − 8·76-s − 24·83-s + 16·86-s − 12·88-s − 24·89-s + 4·97-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 3.61·11-s + 1/4·16-s + 2.91·17-s − 1.83·19-s − 2.55·22-s + 1/5·25-s + 0.176·32-s + 2.05·34-s − 1.29·38-s + 2.43·43-s − 1.80·44-s − 1.42·49-s + 0.141·50-s − 1.56·59-s + 1/8·64-s − 0.977·67-s + 1.45·68-s − 2.34·73-s − 0.917·76-s − 2.63·83-s + 1.72·86-s − 1.27·88-s − 2.54·89-s + 0.406·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.330531568433955397282390142839, −8.137806933221736892131373840887, −7.73490121522356695217356839933, −7.42257774366004622063287945506, −6.86802385357238762255411937862, −5.84293355103774809066040280829, −5.62305662493911647485930324213, −5.57449936126795434832243724178, −4.56211949870166416184694202500, −4.48715934481021693344557314737, −3.37793372322877666574139691343, −2.75202257331423339947272598173, −2.68907161640043859094582658785, −1.53717311332283821140901478063, 0,
1.53717311332283821140901478063, 2.68907161640043859094582658785, 2.75202257331423339947272598173, 3.37793372322877666574139691343, 4.48715934481021693344557314737, 4.56211949870166416184694202500, 5.57449936126795434832243724178, 5.62305662493911647485930324213, 5.84293355103774809066040280829, 6.86802385357238762255411937862, 7.42257774366004622063287945506, 7.73490121522356695217356839933, 8.137806933221736892131373840887, 8.330531568433955397282390142839