L(s) = 1 | + 9-s + 8·23-s − 10·25-s + 4·29-s − 12·37-s + 8·43-s + 12·53-s − 8·67-s − 24·71-s − 32·79-s + 81-s + 16·107-s − 28·109-s + 4·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.66·23-s − 2·25-s + 0.742·29-s − 1.97·37-s + 1.21·43-s + 1.64·53-s − 0.977·67-s − 2.84·71-s − 3.60·79-s + 1/9·81-s + 1.54·107-s − 2.68·109-s + 0.376·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1382976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1382976 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.41005169816589214200697437145, −7.39368277172255819158994073993, −7.06575029892920470972632576297, −6.43859371104521209533782451242, −5.87340118343345405222811842346, −5.62427172231298026532892197535, −5.13242773052280229930287694957, −4.40915109577399770914652954180, −4.26842049846374598919859794951, −3.57155516860156643593206388626, −3.02749641502338293168200065073, −2.52790453796007379380617788419, −1.73728899486802098617607613127, −1.17836444974596423542040449778, 0,
1.17836444974596423542040449778, 1.73728899486802098617607613127, 2.52790453796007379380617788419, 3.02749641502338293168200065073, 3.57155516860156643593206388626, 4.26842049846374598919859794951, 4.40915109577399770914652954180, 5.13242773052280229930287694957, 5.62427172231298026532892197535, 5.87340118343345405222811842346, 6.43859371104521209533782451242, 7.06575029892920470972632576297, 7.39368277172255819158994073993, 7.41005169816589214200697437145