L(s) = 1 | + 4·5-s + 9-s + 2·13-s + 4·17-s + 2·25-s + 12·29-s − 4·37-s + 12·41-s + 4·45-s − 14·49-s + 12·53-s − 4·61-s + 8·65-s − 28·73-s + 81-s + 16·85-s − 36·89-s − 12·97-s + 28·101-s − 4·109-s − 12·113-s + 2·117-s − 22·121-s − 28·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 1/3·9-s + 0.554·13-s + 0.970·17-s + 2/5·25-s + 2.22·29-s − 0.657·37-s + 1.87·41-s + 0.596·45-s − 2·49-s + 1.64·53-s − 0.512·61-s + 0.992·65-s − 3.27·73-s + 1/9·81-s + 1.73·85-s − 3.81·89-s − 1.21·97-s + 2.78·101-s − 0.383·109-s − 1.12·113-s + 0.184·117-s − 2·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.664572713\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.664572713\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.067897300263890057771705983710, −8.860624431335414724430887662727, −8.023927242894012661962773978846, −7.905269575500993133277771362341, −6.92038776336112574405112626570, −6.75712783178321908907460309814, −5.93233764524938909111793115936, −5.82101553029460348251109404035, −5.35188862470330772210371090221, −4.52332315712058664242014926650, −4.11794986731058490261504789900, −3.09863617379496380583398157204, −2.68084777327604974871877197850, −1.76107356520720300622704659457, −1.20573633415257204749821945410,
1.20573633415257204749821945410, 1.76107356520720300622704659457, 2.68084777327604974871877197850, 3.09863617379496380583398157204, 4.11794986731058490261504789900, 4.52332315712058664242014926650, 5.35188862470330772210371090221, 5.82101553029460348251109404035, 5.93233764524938909111793115936, 6.75712783178321908907460309814, 6.92038776336112574405112626570, 7.905269575500993133277771362341, 8.023927242894012661962773978846, 8.860624431335414724430887662727, 9.067897300263890057771705983710