Show commands: SageMath
Rank
The elliptic curves in class 624.d have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 624.d do not have complex multiplication.Modular form 624.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 624.d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
624.d1 | 624c3 | \([0, -1, 0, -832, 9520]\) | \(62275269892/39\) | \(39936\) | \([2]\) | \(128\) | \(0.20313\) | |
624.d2 | 624c2 | \([0, -1, 0, -52, 160]\) | \(61918288/1521\) | \(389376\) | \([2, 2]\) | \(64\) | \(-0.14345\) | |
624.d3 | 624c1 | \([0, -1, 0, -7, -2]\) | \(2725888/1053\) | \(16848\) | \([2]\) | \(32\) | \(-0.49002\) | \(\Gamma_0(N)\)-optimal |
624.d4 | 624c4 | \([0, -1, 0, 8, 448]\) | \(48668/85683\) | \(-87739392\) | \([4]\) | \(128\) | \(0.20313\) |