L(s) = 1 | − 3-s + 9-s − 13-s − 8·19-s + 2·25-s − 27-s − 8·31-s − 12·37-s + 39-s − 14·49-s + 8·57-s + 12·61-s − 4·73-s − 2·75-s + 16·79-s + 81-s + 8·93-s − 4·97-s + 8·103-s − 36·109-s + 12·111-s − 117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 0.277·13-s − 1.83·19-s + 2/5·25-s − 0.192·27-s − 1.43·31-s − 1.97·37-s + 0.160·39-s − 2·49-s + 1.05·57-s + 1.53·61-s − 0.468·73-s − 0.230·75-s + 1.80·79-s + 1/9·81-s + 0.829·93-s − 0.406·97-s + 0.788·103-s − 3.44·109-s + 1.13·111-s − 0.0924·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(89856s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(89856s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
89856
= 28⋅33⋅13
|
Sign: |
−1
|
Analytic conductor: |
5.72929 |
Root analytic conductor: |
1.54712 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 89856, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.467496237890461451783993915929, −8.841068792972054562849056616585, −8.490614344361660813961840308516, −7.926417296360650045367588009050, −7.30393770225398842229611101295, −6.66349222619207276866844009081, −6.54196020674029332950612347695, −5.71871808820946213108219220107, −5.18282097289206777516576185904, −4.72564278819013751077310259954, −3.95597494703164348462587055696, −3.43739842273262245614290193406, −2.36904129671731002829202686194, −1.64095874171669091791461038296, 0,
1.64095874171669091791461038296, 2.36904129671731002829202686194, 3.43739842273262245614290193406, 3.95597494703164348462587055696, 4.72564278819013751077310259954, 5.18282097289206777516576185904, 5.71871808820946213108219220107, 6.54196020674029332950612347695, 6.66349222619207276866844009081, 7.30393770225398842229611101295, 7.926417296360650045367588009050, 8.490614344361660813961840308516, 8.841068792972054562849056616585, 9.467496237890461451783993915929