Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.236496096123$, $\pm0.763503903877$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $338$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3472$ | $12054784$ | $42180637072$ | $146996807602176$ | $511116752712078352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3462$ | $205380$ | $12131086$ | $714924300$ | $42180740502$ | $2488651484820$ | $146830391899678$ | $8662995818654940$ | $511116752123515302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 338 curves (of which all are hyperelliptic):
- $y^2=32 x^6+29 x^5+34 x^4+24 x^3+24 x^2+21 x+1$
- $y^2=5 x^6+58 x^5+9 x^4+48 x^3+48 x^2+42 x+2$
- $y^2=30 x^6+34 x^5+12 x^4+45 x^2+35 x+10$
- $y^2=32 x^6+14 x^5+56 x^4+34 x^3+5 x^2+52 x+7$
- $y^2=x^6+52 x^5+15 x^4+27 x^3+54 x^2+49 x+58$
- $y^2=2 x^6+45 x^5+30 x^4+54 x^3+49 x^2+39 x+57$
- $y^2=31 x^6+23 x^5+9 x^4+9 x^3+20 x^2+27 x+36$
- $y^2=3 x^6+46 x^5+18 x^4+18 x^3+40 x^2+54 x+13$
- $y^2=57 x^6+40 x^5+39 x^4+30 x^3+19 x^2+42 x+43$
- $y^2=50 x^6+37 x^5+54 x^4+3 x^3+14 x^2+28 x$
- $y^2=15 x^6+29 x^5+8 x^4+56 x^3+13 x^2+42 x+29$
- $y^2=51 x^6+54 x^5+22 x^4+28 x^3+17 x^2+57 x+25$
- $y^2=36 x^6+7 x^5+5 x^4+41 x^3+36 x+15$
- $y^2=13 x^6+14 x^5+10 x^4+23 x^3+13 x+30$
- $y^2=49 x^6+34 x^5+39 x^4+26 x^3+17 x^2+14 x+41$
- $y^2=39 x^6+9 x^5+19 x^4+52 x^3+34 x^2+28 x+23$
- $y^2=50 x^6+17 x^5+x^4+6 x^3+48 x^2+52 x+19$
- $y^2=41 x^6+34 x^5+2 x^4+12 x^3+37 x^2+45 x+38$
- $y^2=54 x^6+33 x^5+7 x^4+12 x^3+42 x^2+47 x+28$
- $y^2=49 x^6+7 x^5+14 x^4+24 x^3+25 x^2+35 x+56$
- and 318 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.