Properties

Label 2.0.3.1-9984.1-b
Base field Q(3)\Q(\sqrt{-3})
Weight 22
Level norm 99849984
Level (32a+112) \left(-32 a + 112\right)
Dimension 11
CM no
Base change no
Sign 1-1
Analytic rank odd

Related objects

Downloads

Learn more

Base field: Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1x^2 - x + 1; class number 11.

Form

Weight: 2
Level: 9984.1 = (32a+112) \left(-32 a + 112\right)
Level norm: 9984
Dimension: 1
CM: no
Base change: no
Newspace:2.0.3.1-9984.1 (dimension 3)
Sign of functional equation: 1-1
Analytic rank: odd

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.3.1-9984.1-b of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 3 3.1 = (a+1) \left(a + 1\right) 1 1
4 4 4.1 = (2) \left(2\right) 1 -1
13 13 13.1 = (a+3) \left(a + 3\right) 1 -1

Hecke eigenvalues

The Hecke eigenvalue field is Q\Q. The eigenvalue of the Hecke operator TpT_{\mathfrak{p}} is apa_{\mathfrak{p}}. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues apa_{\mathfrak{p}} for primes p\mathfrak{p} which do not divide the level.

N(p)N(\mathfrak{p}) p\mathfrak{p} apa_{\mathfrak{p}}
7 7 7.1 = (a2) \left(-a - 2\right) 0 0
7 7 7.2 = (a3) \left(a - 3\right) 0 0
13 13 13.2 = (a4) \left(a - 4\right) 2 -2
19 19 19.1 = (2a+5) \left(-2 a + 5\right) 4 -4
19 19 19.2 = (2a+3) \left(2 a + 3\right) 4 -4
25 25 25.1 = (5) \left(5\right) 2 2
31 31 31.1 = (a+5) \left(a + 5\right) 8 -8
31 31 31.2 = (a6) \left(a - 6\right) 0 0
37 37 37.1 = (3a+7) \left(-3 a + 7\right) 10 -10
37 37 37.2 = (3a+4) \left(3 a + 4\right) 2 -2
43 43 43.1 = (a+6) \left(a + 6\right) 4 4
43 43 43.2 = (a7) \left(a - 7\right) 4 -4
61 61 61.1 = (4a+9) \left(-4 a + 9\right) 6 6
61 61 61.2 = (4a+5) \left(4 a + 5\right) 6 6
67 67 67.1 = (2a+9) \left(-2 a + 9\right) 12 12
67 67 67.2 = (2a+7) \left(2 a + 7\right) 12 -12
73 73 73.1 = (a+8) \left(a + 8\right) 2 2
73 73 73.2 = (a9) \left(a - 9\right) 6 -6
79 79 79.1 = (3a+10) \left(-3 a + 10\right) 8 8
79 79 79.2 = (3a+7) \left(3 a + 7\right) 8 8
Display number of eigenvalues