L(s) = 1 | + 2·3-s + 4-s + 2·5-s + 3·9-s + 2·11-s + 2·12-s + 4·15-s + 16-s + 2·20-s + 4·23-s − 3·25-s + 4·27-s + 6·31-s + 4·33-s + 3·36-s + 7·37-s + 2·44-s + 6·45-s + 10·47-s + 2·48-s + 2·49-s + 53-s + 4·55-s − 13·59-s + 4·60-s + 64-s − 3·67-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s + 0.894·5-s + 9-s + 0.603·11-s + 0.577·12-s + 1.03·15-s + 1/4·16-s + 0.447·20-s + 0.834·23-s − 3/5·25-s + 0.769·27-s + 1.07·31-s + 0.696·33-s + 1/2·36-s + 1.15·37-s + 0.301·44-s + 0.894·45-s + 1.45·47-s + 0.288·48-s + 2/7·49-s + 0.137·53-s + 0.539·55-s − 1.69·59-s + 0.516·60-s + 1/8·64-s − 0.366·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.901501585\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.901501585\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.34684927560729861514725628022, −6.71579345103270080101970476895, −6.56936323830077869054928037796, −6.11761745905761028272819763338, −5.65560689632968390875720589841, −5.32427500319042752171811199330, −4.61961497473907061220675551614, −4.27909820458333652055016570791, −3.89890218861491613308323060927, −3.20601237731975112704371048865, −2.92199779645343700804814576141, −2.40444536306630366973006394895, −2.00323295860235314380955774321, −1.41869905548819710932692919181, −0.854076139755655987602375655313,
0.854076139755655987602375655313, 1.41869905548819710932692919181, 2.00323295860235314380955774321, 2.40444536306630366973006394895, 2.92199779645343700804814576141, 3.20601237731975112704371048865, 3.89890218861491613308323060927, 4.27909820458333652055016570791, 4.61961497473907061220675551614, 5.32427500319042752171811199330, 5.65560689632968390875720589841, 6.11761745905761028272819763338, 6.56936323830077869054928037796, 6.71579345103270080101970476895, 7.34684927560729861514725628022