Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x^{2} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.252609214306$, $\pm0.747390785694$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{30}, \sqrt{-31})\) |
Galois group: | $C_2^2$ |
Jacobians: | $252$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3724$ | $13868176$ | $51520352044$ | $191913366758400$ | $713342911801192204$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3726$ | $226982$ | $13860718$ | $844596302$ | $51520329726$ | $3142742836022$ | $191707257732958$ | $11694146092834142$ | $713342911939501806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 252 curves (of which all are hyperelliptic):
- $y^2=30 x^6+30 x^5+52 x^4+15 x^3+9 x^2+56 x+31$
- $y^2=60 x^6+60 x^5+43 x^4+30 x^3+18 x^2+51 x+1$
- $y^2=17 x^6+8 x^5+53 x^4+14 x^3+11 x^2+21 x+39$
- $y^2=34 x^6+16 x^5+45 x^4+28 x^3+22 x^2+42 x+17$
- $y^2=36 x^6+47 x^5+17 x^4+26 x^3+22 x^2+15 x+49$
- $y^2=11 x^6+33 x^5+34 x^4+52 x^3+44 x^2+30 x+37$
- $y^2=7 x^6+27 x^5+50 x^4+39 x^3+12 x^2+16 x+46$
- $y^2=13 x^6+29 x^5+41 x^4+46 x^3+31 x^2+50 x+21$
- $y^2=58 x^6+54 x^5+39 x^4+14 x^3+27 x^2+28 x+39$
- $y^2=55 x^6+47 x^5+17 x^4+28 x^3+54 x^2+56 x+17$
- $y^2=25 x^6+11 x^5+37 x^4+57 x^3+15 x^2+48 x+16$
- $y^2=50 x^6+22 x^5+13 x^4+53 x^3+30 x^2+35 x+32$
- $y^2=6 x^6+30 x^5+31 x^4+5 x^3+7 x^2+29 x+13$
- $y^2=12 x^6+60 x^5+x^4+10 x^3+14 x^2+58 x+26$
- $y^2=29 x^6+20 x^5+24 x^4+56 x^3+23 x^2+40 x+37$
- $y^2=58 x^6+40 x^5+48 x^4+51 x^3+46 x^2+19 x+13$
- $y^2=55 x^6+41 x^5+16 x^4+9 x^3+59 x^2+34 x+46$
- $y^2=6 x^6+54 x^5+56 x^4+42 x^3+59 x^2+50 x+52$
- $y^2=12 x^6+47 x^5+51 x^4+23 x^3+57 x^2+39 x+43$
- $y^2=46 x^6+18 x^5+38 x^4+26 x^3+19 x^2+14 x+8$
- and 232 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{30}, \sqrt{-31})\). |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-930}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.a_ac | $4$ | (not in LMFDB) |