Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 17 x^{2} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.232842520321$, $\pm0.767157479679$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{7}, \sqrt{-141})\) |
Galois group: | $C_2^2$ |
Jacobians: | $196$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6225$ | $38750625$ | $243087768900$ | $1518058873175625$ | $9468276079467980625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6208$ | $493040$ | $38974468$ | $3077056400$ | $243088082278$ | $19203908986160$ | $1517108668368388$ | $119851595982618320$ | $9468276076309114048$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=31 x^6+25 x^5+49 x^4+55 x^3+20 x^2+6 x+52$
- $y^2=14 x^6+75 x^5+68 x^4+7 x^3+60 x^2+18 x+77$
- $y^2=33 x^6+27 x^5+37 x^4+50 x^3+44 x^2+24 x+1$
- $y^2=20 x^6+2 x^5+32 x^4+71 x^3+53 x^2+72 x+3$
- $y^2=57 x^6+32 x^5+75 x^4+71 x^3+17 x^2+40 x+65$
- $y^2=14 x^6+50 x^5+26 x^4+76 x^3+3 x^2+55 x+48$
- $y^2=42 x^6+71 x^5+78 x^4+70 x^3+9 x^2+7 x+65$
- $y^2=39 x^6+28 x^5+13 x^4+32 x^3+12 x^2+74 x+62$
- $y^2=38 x^6+5 x^5+39 x^4+17 x^3+36 x^2+64 x+28$
- $y^2=45 x^6+58 x^5+39 x^4+55 x^3+55 x^2+78 x+36$
- $y^2=56 x^6+16 x^5+38 x^4+7 x^3+7 x^2+76 x+29$
- $y^2=61 x^6+6 x^5+22 x^4+55 x^3+20 x^2+31 x+73$
- $y^2=25 x^6+18 x^5+66 x^4+7 x^3+60 x^2+14 x+61$
- $y^2=58 x^6+60 x^5+64 x^4+53 x^3+10 x^2+73 x+62$
- $y^2=16 x^6+22 x^5+34 x^4+x^3+30 x^2+61 x+28$
- $y^2=3 x^6+2 x^5+32 x^4+73 x^3+2 x^2+50 x+8$
- $y^2=9 x^6+6 x^5+17 x^4+61 x^3+6 x^2+71 x+24$
- $y^2=9 x^6+54 x^5+76 x^4+22 x^3+23 x^2+3 x+54$
- $y^2=71 x^6+16 x^5+27 x^4+46 x^3+55 x^2+63 x+65$
- $y^2=13 x^6+26 x^5+49 x^4+36 x^3+18 x^2+32 x+12$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-141})\). |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.ar 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-987}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.a_r | $4$ | (not in LMFDB) |