Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 71 x^{2} )( 1 + 71 x^{2} )$ |
$1 - 7 x + 142 x^{2} - 497 x^{3} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.363650862115$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $112$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4680$ | $26619840$ | $128511882720$ | $645533781984000$ | $3255114593716947000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $65$ | $5277$ | $359060$ | $25403033$ | $1804157875$ | $128100397662$ | $9095121018685$ | $645753529192273$ | $45848500998757340$ | $3255243553117837077$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=67 x^6+37 x^5+65 x^4+38 x^3+44 x^2+47 x+36$
- $y^2=50 x^6+51 x^5+45 x^4+46 x^3+60 x^2+13 x+13$
- $y^2=6 x^6+13 x^5+29 x^4+62 x^3+9 x^2+62 x+21$
- $y^2=18 x^6+59 x^5+51 x^4+44 x^3+13 x^2+54 x+26$
- $y^2=61 x^6+3 x^5+7 x^4+38 x^3+37 x^2+68 x+45$
- $y^2=19 x^6+53 x^5+63 x^4+55 x^3+46 x^2+67 x+70$
- $y^2=55 x^6+39 x^5+59 x^4+3 x^3+47 x^2+10 x+12$
- $y^2=22 x^6+60 x^5+25 x^4+60 x^3+47 x^2+41$
- $y^2=29 x^6+64 x^5+42 x^4+17 x^2+27 x+36$
- $y^2=69 x^6+23 x^5+5 x^4+45 x^3+44 x^2+64 x+2$
- $y^2=23 x^6+20 x^4+50 x^3+7 x^2+44 x+17$
- $y^2=46 x^6+8 x^5+11 x^4+55 x^3+57 x^2+55 x+61$
- $y^2=45 x^6+32 x^5+44 x^4+45 x^3+17 x^2+30 x+45$
- $y^2=11 x^6+48 x^5+27 x^4+69 x^3+x^2+36 x+27$
- $y^2=32 x^6+14 x^5+55 x^4+16 x^3+20 x^2+x+33$
- $y^2=25 x^6+16 x^5+41 x^4+23 x^3+29 x^2+40 x+45$
- $y^2=62 x^6+16 x^5+37 x^4+61 x^3+9 x^2+47 x+11$
- $y^2=43 x^6+62 x^5+27 x^4+x^3+19 x^2+23 x+1$
- $y^2=67 x^6+7 x^5+56 x^4+66 x^3+30 x^2+18 x+40$
- $y^2=49 x^6+56 x^5+45 x^4+67 x^3+60 x^2+49 x+52$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.ah $\times$ 1.71.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.dp $\times$ 1.5041.fm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.h_fm | $2$ | (not in LMFDB) |