Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 29 x^{2} )( 1 + 5 x + 29 x^{2} )$ |
$1 + 33 x^{2} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.346328109963$, $\pm0.653671890037$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $38$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $875$ | $765625$ | $594776000$ | $501087015625$ | $420707238021875$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $908$ | $24390$ | $708468$ | $20511150$ | $594728678$ | $17249876310$ | $500248538788$ | $14507145975870$ | $420707242743548$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 38 curves (of which all are hyperelliptic):
- $y^2=8 x^6+14 x^5+10 x^4+5 x^3+16 x^2+15 x+9$
- $y^2=16 x^6+28 x^5+20 x^4+10 x^3+3 x^2+x+18$
- $y^2=x^6+12 x^5+4 x^4+13 x^3+8 x^2+13 x+20$
- $y^2=10 x^6+12 x^5+28 x^4+15 x^3+28 x^2+12 x+10$
- $y^2=20 x^6+24 x^5+27 x^4+x^3+27 x^2+24 x+20$
- $y^2=7 x^6+11 x^5+10 x^4+13 x^3+28 x^2+11 x+1$
- $y^2=14 x^6+22 x^5+20 x^4+26 x^3+27 x^2+22 x+2$
- $y^2=x^6+2 x^5+20 x^4+13 x^3+28 x^2+5 x+2$
- $y^2=2 x^6+4 x^5+11 x^4+26 x^3+27 x^2+10 x+4$
- $y^2=9 x^6+25 x^5+15 x^4+11 x^3+4 x^2+18 x+9$
- $y^2=18 x^6+21 x^5+x^4+22 x^3+8 x^2+7 x+18$
- $y^2=16 x^6+10 x^5+2 x^4+26 x^3+22 x^2+25 x+22$
- $y^2=3 x^6+20 x^5+4 x^4+23 x^3+15 x^2+21 x+15$
- $y^2=13 x^6+16 x^5+15 x^4+28 x^2+2 x+5$
- $y^2=25 x^6+5 x^5+9 x^4+20 x^3+18 x^2+6 x+1$
- $y^2=3 x^6+28 x^4+22 x^3+28 x^2+19 x+28$
- $y^2=6 x^6+27 x^4+15 x^3+27 x^2+9 x+27$
- $y^2=23 x^6+5 x^5+15 x^4+16 x^3+4 x^2+7 x+26$
- $y^2=17 x^6+10 x^5+x^4+3 x^3+8 x^2+14 x+23$
- $y^2=11 x^6+6 x^5+5 x^4+9 x^3+5 x^2+6 x+11$
- and 18 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.af $\times$ 1.29.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.bh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.