Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 53 x^{2} )( 1 + 10 x + 53 x^{2} )$ |
$1 - x - 4 x^{2} - 53 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.227402221936$, $\pm0.740986412023$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $156$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2752$ | $7870720$ | $22138805248$ | $62346334336000$ | $174892747498343872$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $53$ | $2801$ | $148706$ | $7901457$ | $418208113$ | $22164433814$ | $1174712327821$ | $62259661730113$ | $3299763536278298$ | $174887470054057961$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=47 x^5+38 x^4+34 x^3+49 x^2+9 x+27$
- $y^2=24 x^6+17 x^5+35 x^4+48 x^3+27 x^2+26 x+37$
- $y^2=13 x^6+32 x^5+23 x^4+20 x^3+44 x^2+34 x+31$
- $y^2=28 x^6+49 x^5+49 x^4+3 x^3+19 x^2+24 x+50$
- $y^2=44 x^6+28 x^5+28 x^4+21 x^2+32 x+4$
- $y^2=34 x^6+49 x^5+x^4+45 x^3+10 x^2+28 x+16$
- $y^2=20 x^6+25 x^5+15 x^4+3 x^3+17 x^2+6 x+24$
- $y^2=49 x^6+14 x^5+5 x^4+18 x^3+20 x^2+33 x+34$
- $y^2=x^6+3 x^5+6 x^4+6 x^3+29 x^2+3 x+24$
- $y^2=36 x^6+28 x^5+19 x^4+9 x^3+29 x^2+52 x+33$
- $y^2=19 x^6+8 x^5+45 x^4+40 x^3+35 x^2+19 x+20$
- $y^2=47 x^6+36 x^5+26 x^4+16 x^3+31 x^2+11 x+38$
- $y^2=24 x^5+27 x^4+26 x^3+17 x^2+16 x+8$
- $y^2=31 x^6+26 x^5+46 x^4+44 x^3+3 x^2+16 x+17$
- $y^2=36 x^6+34 x^5+26 x^4+25 x^3+18 x^2+10 x+34$
- $y^2=10 x^6+20 x^5+43 x^4+19 x^3+6 x^2+20 x+37$
- $y^2=25 x^6+37 x^5+31 x^4+16 x^3+21 x^2+16 x+4$
- $y^2=43 x^6+31 x^5+5 x^4+9 x^3+33 x^2+11 x+51$
- $y^2=9 x^6+6 x^5+11 x^4+9 x^3+47 x^2+52 x$
- $y^2=9 x^6+29 x^5+49 x^4+4 x^3+33 x^2+7 x+4$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.al $\times$ 1.53.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.av_ii | $2$ | (not in LMFDB) |
2.53.b_ae | $2$ | (not in LMFDB) |
2.53.v_ii | $2$ | (not in LMFDB) |