Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 97 x^{2} )( 1 + 6 x + 97 x^{2} )$ |
$1 - 7 x + 116 x^{2} - 679 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.270566851460$, $\pm0.598524067447$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $216$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8840$ | $90274080$ | $833022513440$ | $7838500171881600$ | $73744713725568696200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $9593$ | $912730$ | $88541329$ | $8587608211$ | $832970799326$ | $80798252609347$ | $7837433579735521$ | $760231058909077210$ | $73742412682677452393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=69 x^6+50 x^5+96 x^4+48 x^3+43 x^2+94 x+44$
- $y^2=25 x^6+30 x^5+85 x^4+28 x^3+93 x^2+9 x+56$
- $y^2=45 x^6+47 x^4+92 x^3+58 x^2+43 x+82$
- $y^2=64 x^6+84 x^5+3 x^4+85 x^3+58 x^2+48 x+71$
- $y^2=28 x^6+8 x^5+88 x^4+93 x^3+32 x^2+64 x+31$
- $y^2=84 x^6+x^5+61 x^4+24 x^3+14 x^2+29 x+77$
- $y^2=44 x^6+88 x^5+91 x^4+37 x^3+11 x^2+70 x+62$
- $y^2=53 x^6+59 x^5+85 x^4+25 x^3+90 x^2+16 x+78$
- $y^2=38 x^6+87 x^5+77 x^4+23 x^3+54 x^2+38 x+13$
- $y^2=53 x^6+5 x^5+72 x^4+78 x^3+86 x^2+74 x+88$
- $y^2=58 x^6+76 x^5+90 x^4+19 x^3+16 x^2+51 x+19$
- $y^2=55 x^6+67 x^5+13 x^4+8 x^3+31 x^2+40 x+6$
- $y^2=39 x^6+60 x^5+37 x^4+89 x^3+42 x^2+46 x+24$
- $y^2=25 x^6+35 x^5+70 x^4+46 x^3+75 x^2+11 x+90$
- $y^2=32 x^6+58 x^5+51 x^4+14 x^3+53 x^2+55 x+2$
- $y^2=3 x^6+85 x^5+10 x^4+22 x^3+26 x^2+41 x+45$
- $y^2=47 x^6+12 x^5+82 x^4+17 x^3+12 x^2+90 x+46$
- $y^2=6 x^6+61 x^5+77 x^4+56 x^3+38 x^2+31 x+80$
- $y^2=65 x^6+33 x^5+84 x^4+14 x^3+18 x^2+25 x$
- $y^2=87 x^6+37 x^5+58 x^4+61 x^3+86 x^2+76 x+39$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.an $\times$ 1.97.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.at_km | $2$ | (not in LMFDB) |
2.97.h_em | $2$ | (not in LMFDB) |
2.97.t_km | $2$ | (not in LMFDB) |