| L(s) = 1 | + 2·3-s + 6·5-s − 3·9-s − 3·11-s + 12·15-s + 6·23-s + 17·25-s − 14·27-s − 14·31-s − 6·33-s − 2·37-s − 18·45-s − 18·47-s + 6·53-s − 18·55-s + 18·59-s − 14·67-s + 12·69-s + 34·75-s − 4·81-s + 30·89-s − 28·93-s − 20·97-s + 9·99-s + 22·103-s − 4·111-s + 12·113-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 2.68·5-s − 9-s − 0.904·11-s + 3.09·15-s + 1.25·23-s + 17/5·25-s − 2.69·27-s − 2.51·31-s − 1.04·33-s − 0.328·37-s − 2.68·45-s − 2.62·47-s + 0.824·53-s − 2.42·55-s + 2.34·59-s − 1.71·67-s + 1.44·69-s + 3.92·75-s − 4/9·81-s + 3.17·89-s − 2.90·93-s − 2.03·97-s + 0.904·99-s + 2.16·103-s − 0.379·111-s + 1.12·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4648336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4648336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.27984610896713252075583450834, −6.61115025453772651831676615593, −6.14784187664657718195433732328, −6.02455306491682974275355684196, −5.28434328079604079625535316421, −5.24263093141446767528402808314, −5.13122282956772824311438407791, −4.05691268508438027952525861549, −3.31407617989174490462667281240, −3.24691773144996815761222106046, −2.57152545507023181505238705889, −2.11524838018749549647791443687, −2.04448974040096779312937543400, −1.28760101001418094464325191134, 0,
1.28760101001418094464325191134, 2.04448974040096779312937543400, 2.11524838018749549647791443687, 2.57152545507023181505238705889, 3.24691773144996815761222106046, 3.31407617989174490462667281240, 4.05691268508438027952525861549, 5.13122282956772824311438407791, 5.24263093141446767528402808314, 5.28434328079604079625535316421, 6.02455306491682974275355684196, 6.14784187664657718195433732328, 6.61115025453772651831676615593, 7.27984610896713252075583450834