Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 3 x + 53 x^{2} )^{2}$ |
| $1 - 6 x + 115 x^{2} - 318 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.433942022438$, $\pm0.433942022438$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $42$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2601$ | $8450649$ | $22298851584$ | $62199894929481$ | $174858012242793441$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $3004$ | $149778$ | $7882900$ | $418125048$ | $22164551638$ | $1174715445000$ | $62259693229924$ | $3299763372084234$ | $174887469556975564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=28 x^6+39 x^5+25 x^4+28 x^3+14 x+9$
- $y^2=42 x^6+49 x^5+35 x^4+19 x^3+18 x^2+49 x+11$
- $y^2=37 x^6+35 x^5+16 x^4+20 x^3+50 x^2+43 x+14$
- $y^2=27 x^6+43 x^5+10 x^4+25 x^3+48 x^2+21 x+31$
- $y^2=41 x^6+13 x^5+19 x^4+38 x^3+19 x^2+26 x+37$
- $y^2=45 x^6+35 x^5+11 x^4+37 x^2+32 x+20$
- $y^2=48 x^6+49 x^5+39 x^4+52 x^3+5 x^2+26 x+47$
- $y^2=11 x^6+46 x^5+7 x^4+14 x^3+6 x^2+10 x+6$
- $y^2=5 x^6+12 x^5+48 x^4+24 x^3+7 x^2+31 x+27$
- $y^2=22 x^6+31 x^5+32 x^4+38 x^3+8 x^2+45 x+2$
- $y^2=20 x^6+40 x^5+39 x^4+40 x^3+19 x^2+25 x+19$
- $y^2=43 x^6+40 x^5+3 x^4+12 x^3+49 x^2+19 x+27$
- $y^2=10 x^6+46 x^5+27 x^4+47 x^3+41 x^2+49 x+37$
- $y^2=45 x^6+25 x^4+30 x^3+20 x^2+34 x+37$
- $y^2=23 x^6+23 x^5+11 x^4+21 x^3+34 x^2+43 x+17$
- $y^2=39 x^6+35 x^5+27 x^4+29 x^3+45 x^2+3 x+51$
- $y^2=48 x^6+22 x^5+45 x^4+51 x^3+45 x^2+22 x+48$
- $y^2=17 x^6+5 x^5+29 x^4+26 x^3+29 x^2+5 x+17$
- $y^2=49 x^6+50 x^5+12 x^4+25 x^3+14 x^2+42 x+17$
- $y^2=x^6+22 x^5+34 x^4+21 x^3+28 x^2+13 x+17$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ad 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-203}) \)$)$ |
Base change
This is a primitive isogeny class.