Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 79 x^{2} )( 1 + 13 x + 79 x^{2} )$ |
| $1 - 11 x^{2} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.238910621905$, $\pm0.761089378095$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $132$ |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6231$ | $38825361$ | $243087660144$ | $1518071964528249$ | $9468276080525965551$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6220$ | $493040$ | $38974804$ | $3077056400$ | $243087864766$ | $19203908986160$ | $1517108660118244$ | $119851595982618320$ | $9468276078425083900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=54 x^6+76 x^5+45 x^4+52 x^3+24 x^2+49 x+49$
- $y^2=4 x^6+70 x^5+56 x^4+77 x^3+72 x^2+68 x+68$
- $y^2=11 x^6+16 x^4+57 x^3+22 x^2+62 x+71$
- $y^2=33 x^6+48 x^4+13 x^3+66 x^2+28 x+55$
- $y^2=4 x^6+63 x^5+41 x^4+19 x^3+19 x^2+75 x+39$
- $y^2=20 x^6+24 x^5+67 x^4+73 x^3+62 x^2+35 x+49$
- $y^2=60 x^6+72 x^5+43 x^4+61 x^3+28 x^2+26 x+68$
- $y^2=64 x^6+41 x^5+34 x^4+65 x^3+37 x^2+73 x+50$
- $y^2=34 x^6+44 x^5+23 x^4+37 x^3+32 x^2+61 x+71$
- $y^2=24 x^6+57 x^5+17 x^4+70 x^3+17 x^2+76 x+50$
- $y^2=72 x^6+13 x^5+51 x^4+52 x^3+51 x^2+70 x+71$
- $y^2=49 x^6+46 x^5+75 x^4+66 x^2+35 x+10$
- $y^2=68 x^6+59 x^5+67 x^4+40 x^2+26 x+30$
- $y^2=38 x^6+55 x^5+7 x^4+19 x^3+18 x+37$
- $y^2=35 x^6+7 x^5+21 x^4+57 x^3+54 x+32$
- $y^2=67 x^6+17 x^5+54 x^4+58 x^3+35 x^2+7 x+38$
- $y^2=43 x^6+51 x^5+4 x^4+16 x^3+26 x^2+21 x+35$
- $y^2=69 x^6+13 x^5+3 x^4+37 x^3+57 x^2+17 x+11$
- $y^2=49 x^6+39 x^5+9 x^4+32 x^3+13 x^2+51 x+33$
- $y^2=75 x^6+55 x^5+34 x^4+27 x^3+75 x^2+54 x+2$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.an $\times$ 1.79.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.