Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 7 x + 67 x^{2} )^{2}$ |
| $1 + 14 x + 183 x^{2} + 938 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.640638367129$, $\pm0.640638367129$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $44$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5625$ | $20930625$ | $89820090000$ | $406138370765625$ | $1822997171402015625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $82$ | $4660$ | $298636$ | $20154628$ | $1350243142$ | $90457321030$ | $6060711125026$ | $406067752015108$ | $27206533907265652$ | $1822837802986249300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=23 x^6+5 x^5+41 x^4+4 x^3+41 x^2+5 x+23$
- $y^2=16 x^6+9 x^5+7 x^4+2 x^3+7 x^2+9 x+16$
- $y^2=21 x^6+34 x^5+13 x^4+22 x^3+13 x^2+34 x+21$
- $y^2=48 x^6+57 x^5+63 x^4+8 x^3+34 x^2+25 x+37$
- $y^2=61 x^6+7 x^5+35 x^4+47 x^3+3 x^2+10 x+61$
- $y^2=51 x^6+33 x^4+41 x^3+20 x^2+58 x+12$
- $y^2=65 x^6+24 x^5+28 x^4+52 x^3+43 x^2+34 x+33$
- $y^2=14 x^6+49 x^5+47 x^4+49 x^3+47 x^2+49 x+14$
- $y^2=21 x^6+42 x^5+47 x^4+27 x^3+47 x^2+42 x+21$
- $y^2=x^6+x^3+1$
- $y^2=52 x^6+42 x^5+57 x^4+53 x^3+9 x^2+63 x+4$
- $y^2=62 x^6+16 x^5+23 x^4+13 x^3+23 x^2+16 x+62$
- $y^2=43 x^6+26 x^5+11 x^4+27 x^3+34 x^2+9 x+47$
- $y^2=65 x^6+30 x^5+49 x^4+56 x^3+49 x^2+30 x+65$
- $y^2=27 x^6+43 x^5+42 x^4+22 x^3+7 x^2+21 x+6$
- $y^2=17 x^6+54 x^5+19 x^4+56 x^3+41 x^2+42 x+13$
- $y^2=37 x^6+42 x^5+62 x^4+40 x^3+62 x^2+42 x+37$
- $y^2=58 x^6+5 x^5+18 x^4+55 x^3+18 x^2+5 x+58$
- $y^2=17 x^6+42 x^5+42 x^4+37 x^3+42 x^2+42 x+17$
- $y^2=22 x^6+9 x^5+55 x^4+7 x^3+x^2+40 x+32$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$ |
Base change
This is a primitive isogeny class.