| L(s) = 1 | + 4-s − 11-s + 16-s − 10·25-s − 8·31-s + 4·37-s − 44-s + 24·47-s − 10·49-s − 24·53-s + 24·59-s + 64-s + 16·67-s + 24·71-s + 4·97-s − 10·100-s + 16·103-s + 24·113-s + 121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 4·148-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | + 1/2·4-s − 0.301·11-s + 1/4·16-s − 2·25-s − 1.43·31-s + 0.657·37-s − 0.150·44-s + 3.50·47-s − 1.42·49-s − 3.29·53-s + 3.12·59-s + 1/8·64-s + 1.95·67-s + 2.84·71-s + 0.406·97-s − 100-s + 1.57·103-s + 2.25·113-s + 1/11·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.328·148-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 431244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 431244 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.836860576\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.836860576\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.329295392613665337579164470522, −8.262955010043880759821963787460, −7.61495866909191069709821054220, −7.29731250016140642032626805500, −6.85457054556699367962615309050, −6.04977512526916981733349434592, −6.03837711275371548392107302554, −5.28004968616744444473082066349, −4.94712570992833096255379440889, −4.01426444342608389151630027274, −3.78216905129380833725816829242, −3.11110186957338669233243757307, −2.12387935125240219535618583660, −2.06078284868063780415053686864, −0.72040081483209956050869656181,
0.72040081483209956050869656181, 2.06078284868063780415053686864, 2.12387935125240219535618583660, 3.11110186957338669233243757307, 3.78216905129380833725816829242, 4.01426444342608389151630027274, 4.94712570992833096255379440889, 5.28004968616744444473082066349, 6.03837711275371548392107302554, 6.04977512526916981733349434592, 6.85457054556699367962615309050, 7.29731250016140642032626805500, 7.61495866909191069709821054220, 8.262955010043880759821963787460, 8.329295392613665337579164470522