| L(s) = 1 | − 4-s + 4·5-s − 9-s − 4·11-s + 16-s + 16·19-s − 4·20-s + 11·25-s − 8·29-s + 2·31-s + 36-s − 12·41-s + 4·44-s − 4·45-s + 10·49-s − 16·55-s + 28·59-s − 4·61-s − 64-s + 24·71-s − 16·76-s + 32·79-s + 4·80-s + 81-s − 12·89-s + 64·95-s + 4·99-s + ⋯ |
| L(s) = 1 | − 1/2·4-s + 1.78·5-s − 1/3·9-s − 1.20·11-s + 1/4·16-s + 3.67·19-s − 0.894·20-s + 11/5·25-s − 1.48·29-s + 0.359·31-s + 1/6·36-s − 1.87·41-s + 0.603·44-s − 0.596·45-s + 10/7·49-s − 2.15·55-s + 3.64·59-s − 0.512·61-s − 1/8·64-s + 2.84·71-s − 1.83·76-s + 3.60·79-s + 0.447·80-s + 1/9·81-s − 1.27·89-s + 6.56·95-s + 0.402·99-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.636523682\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.636523682\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.992703882407293044710947233183, −9.834232487658171719532765214120, −9.520603337532747126115513738503, −9.258641200621032622349906959493, −8.727133041099525573745914304987, −8.034241419903732867579777149116, −7.975424352582576624268774178038, −7.22897813146381006534951537156, −6.90816978743354370729078188135, −6.43261538440133354631313820935, −5.51534312916078272336124634205, −5.47584513291779601327362567906, −5.27388207243613997790328100551, −4.95701155419698269502046728540, −3.68981082289944354077731147925, −3.57913206698963702191270578467, −2.60679097366355926524178899677, −2.48263301015210684269712312384, −1.50113647328993692059699899371, −0.827578532815388943043566540273,
0.827578532815388943043566540273, 1.50113647328993692059699899371, 2.48263301015210684269712312384, 2.60679097366355926524178899677, 3.57913206698963702191270578467, 3.68981082289944354077731147925, 4.95701155419698269502046728540, 5.27388207243613997790328100551, 5.47584513291779601327362567906, 5.51534312916078272336124634205, 6.43261538440133354631313820935, 6.90816978743354370729078188135, 7.22897813146381006534951537156, 7.975424352582576624268774178038, 8.034241419903732867579777149116, 8.727133041099525573745914304987, 9.258641200621032622349906959493, 9.520603337532747126115513738503, 9.834232487658171719532765214120, 9.992703882407293044710947233183