Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 73 x^{2} )^{2}$ |
$1 - 146 x^{2} + 5329 x^{4}$ | |
Frobenius angles: | $0$, $0$, $1$, $1$ |
Angle rank: | $0$ (numerical) |
Number field: | \(\Q(\sqrt{73}) \) |
Galois group: | $C_2$ |
Jacobians: | $13$ |
This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5184$ | $26873856$ | $151333448256$ | $805854925357056$ | $4297625825557414464$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5038$ | $389018$ | $28376926$ | $2073071594$ | $151332670222$ | $11047398519098$ | $806459978301118$ | $58871586708267914$ | $4297625821411271278$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which all are hyperelliptic):
- $y^2=10 x^6+7 x^4+25 x^3+64 x^2+46$
- $y^2=x^6+26 x^3+56$
- $y^2=43 x^6+51 x^5+64 x^4+6 x^3+43 x^2+7 x+65$
- $y^2=x^6+x^3+66$
- $y^2=49 x^6+70 x^5+15 x^4+19 x^3+68 x^2+10 x+53$
- $y^2=54 x^6+49 x^5+10 x^4+52 x^2+27 x+2$
- $y^2=52 x^6+45 x^5+65 x^4+32 x^3+x^2+4 x+67$
- $y^2=41 x^6+6 x^5+33 x^4+14 x^3+5 x^2+20 x+43$
- $y^2=x^6+11 x^3+17$
- $y^2=x^6+x^3+17$
- $y^2=69 x^6+55 x^5+34 x^4+42 x^3+32 x^2+3 x+45$
- $y^2=47 x^6+62 x^5+30 x^4+43 x^3+57 x^2+53 x+23$
- $y^2=31 x^6+22 x^5+68 x^4+65 x^3+2 x^2+59 x+57$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is the quaternion algebra over \(\Q(\sqrt{73}) \) ramified at both real infinite places. |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.afq 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $73$ and $\infty$. |
Base change
This is a primitive isogeny class.