Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 59 x^{2} )^{2}$ |
| $1 - 28 x + 314 x^{2} - 1652 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.135062563049$, $\pm0.135062563049$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $4$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2116$ | $11587216$ | $42071752996$ | $146851740697600$ | $511156771256625796$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $3326$ | $204848$ | $12119118$ | $714980272$ | $42181213646$ | $2488657702528$ | $146830484531998$ | $8662996108797632$ | $511116754593906206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=50 x^6+57 x^5+5 x^4+7 x^3+5 x^2+57 x+50$
- $y^2=18 x^6+3 x^5+39 x^4+55 x^3+24 x^2+35 x+43$
- $y^2=53 x^6+38 x^5+10 x^4+35 x^3+21 x^2+31 x+34$
- $y^2=40 x^6+44 x^4+44 x^2+40$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.