L(s) = 1 | − 2·7-s + 2·13-s + 10·19-s − 6·25-s − 16·31-s − 10·37-s + 8·43-s − 11·49-s + 6·61-s + 26·67-s + 18·73-s − 22·79-s − 4·91-s + 2·97-s + 6·103-s − 20·109-s − 18·121-s + 127-s + 131-s − 20·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 0.755·7-s + 0.554·13-s + 2.29·19-s − 6/5·25-s − 2.87·31-s − 1.64·37-s + 1.21·43-s − 1.57·49-s + 0.768·61-s + 3.17·67-s + 2.10·73-s − 2.47·79-s − 0.419·91-s + 0.203·97-s + 0.591·103-s − 1.91·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s − 1.73·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.972335257658859713952381664704, −7.57195972780640499908950962067, −7.23561788630982287928838202899, −6.71110929993388671275045148454, −6.36176902503839563041243175150, −5.61589452328752483822361023345, −5.31494333285431893846186259722, −5.17169676997140923385106697279, −4.05174927146180313890169025811, −3.58529057716851715664298339034, −3.50900323268563987471302746975, −2.66421157652505017015711163951, −1.91159340940988138724333401775, −1.19497678164755144713673653335, 0,
1.19497678164755144713673653335, 1.91159340940988138724333401775, 2.66421157652505017015711163951, 3.50900323268563987471302746975, 3.58529057716851715664298339034, 4.05174927146180313890169025811, 5.17169676997140923385106697279, 5.31494333285431893846186259722, 5.61589452328752483822361023345, 6.36176902503839563041243175150, 6.71110929993388671275045148454, 7.23561788630982287928838202899, 7.57195972780640499908950962067, 7.972335257658859713952381664704