| L(s) = 1 | + 3·4-s + 4·7-s + 5·16-s − 6·25-s + 12·28-s + 4·37-s + 24·43-s + 9·49-s + 3·64-s − 16·67-s + 16·79-s − 18·100-s + 4·109-s + 20·112-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 12·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 72·172-s + ⋯ |
| L(s) = 1 | + 3/2·4-s + 1.51·7-s + 5/4·16-s − 6/5·25-s + 2.26·28-s + 0.657·37-s + 3.65·43-s + 9/7·49-s + 3/8·64-s − 1.95·67-s + 1.80·79-s − 9/5·100-s + 0.383·109-s + 1.88·112-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.986·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s + 5.48·172-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.810476638\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.810476638\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.107530367726792542516902381016, −7.71581532580987418978840899910, −7.56326489158108072490065360833, −7.20120785357851515902900527767, −6.44593537941038145358398257586, −6.13949758592290680880334427678, −5.66670525826289776323190550935, −5.26964924686290152055608689787, −4.48371137978466660810322329493, −4.20847924863469053518436666093, −3.50377117937361779686405002252, −2.65229866390281895850843487513, −2.32898089052969175523726760080, −1.72566933363098237773624433718, −1.02882791170821988124391670848,
1.02882791170821988124391670848, 1.72566933363098237773624433718, 2.32898089052969175523726760080, 2.65229866390281895850843487513, 3.50377117937361779686405002252, 4.20847924863469053518436666093, 4.48371137978466660810322329493, 5.26964924686290152055608689787, 5.66670525826289776323190550935, 6.13949758592290680880334427678, 6.44593537941038145358398257586, 7.20120785357851515902900527767, 7.56326489158108072490065360833, 7.71581532580987418978840899910, 8.107530367726792542516902381016