L(s) = 1 | − 6·11-s + 2·17-s + 6·25-s − 2·29-s + 12·31-s + 4·37-s − 6·41-s + 2·49-s − 24·67-s − 4·83-s − 8·97-s − 2·101-s + 24·103-s + 4·107-s + 25·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 1.80·11-s + 0.485·17-s + 6/5·25-s − 0.371·29-s + 2.15·31-s + 0.657·37-s − 0.937·41-s + 2/7·49-s − 2.93·67-s − 0.439·83-s − 0.812·97-s − 0.199·101-s + 2.36·103-s + 0.386·107-s + 2.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.153·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.520950597\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.520950597\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.220360823339759419006551008492, −8.035909903774983823134603452654, −7.51182889491257422369255213093, −7.14743292446675118586268964439, −6.56858247838639680170781105978, −6.06128726386395811021755083698, −5.62663526961907192326610983572, −5.11789155625179626066968508769, −4.64470131448889184216035506328, −4.32119124261040665174484819843, −3.33357816393585859922983279888, −2.92956586559013282292874150295, −2.52987136530612911000240338476, −1.61986729644494460994142458606, −0.62691583743259270301489087147,
0.62691583743259270301489087147, 1.61986729644494460994142458606, 2.52987136530612911000240338476, 2.92956586559013282292874150295, 3.33357816393585859922983279888, 4.32119124261040665174484819843, 4.64470131448889184216035506328, 5.11789155625179626066968508769, 5.62663526961907192326610983572, 6.06128726386395811021755083698, 6.56858247838639680170781105978, 7.14743292446675118586268964439, 7.51182889491257422369255213093, 8.035909903774983823134603452654, 8.220360823339759419006551008492