Properties

Label 2.41.g_co
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 41 x^{2} )( 1 + 8 x + 41 x^{2} )$
  $1 + 6 x + 66 x^{2} + 246 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.450084017046$, $\pm0.714776712523$
Angle rank:  $2$ (numerical)
Jacobians:  $90$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2000$ $2992000$ $4734002000$ $7985815552000$ $13420324651250000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $1778$ $68688$ $2826078$ $115836048$ $4750100498$ $194755942128$ $7984919893438$ $327381891103728$ $13422659517954098$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The isogeny class factors as 1.41.ac $\times$ 1.41.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ak_du$2$(not in LMFDB)
2.41.ag_co$2$(not in LMFDB)
2.41.k_du$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ak_du$2$(not in LMFDB)
2.41.ag_co$2$(not in LMFDB)
2.41.k_du$2$(not in LMFDB)
2.41.am_dy$4$(not in LMFDB)
2.41.ai_ck$4$(not in LMFDB)
2.41.i_ck$4$(not in LMFDB)
2.41.m_dy$4$(not in LMFDB)