Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x^{2} + 169 x^{4}$ |
Frobenius angles: | $\pm0.262254793849$, $\pm0.737745206151$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-7})\) |
Galois group: | $C_2^2$ |
Jacobians: | $10$ |
Isomorphism classes: | 32 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $172$ | $29584$ | $4825804$ | $834978816$ | $137858770732$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $14$ | $174$ | $2198$ | $29230$ | $371294$ | $4824798$ | $62748518$ | $815621854$ | $10604499374$ | $137859049614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=9 x^6+8 x^5+11 x^4+7 x^3+3 x^2+5 x+7$
- $y^2=3 x^6+7 x^5+8 x^4+x^3+12 x^2+6 x+2$
- $y^2=x^6+5 x^5+5 x^4+4 x^3+4 x^2+2 x+10$
- $y^2=7 x^6+8 x^5+10 x^4+4 x^3+11 x^2+5 x+4$
- $y^2=4 x^6+11 x^5+8 x^4+5 x^3+12 x^2+2 x+7$
- $y^2=4 x^6+2 x^5+10 x^4+10 x^3+11 x^2+11 x+6$
- $y^2=7 x^6+x^5+7 x^4+2 x^3+7 x^2+4 x+1$
- $y^2=x^6+2 x^5+x^4+4 x^3+x^2+8 x+2$
- $y^2=12 x^6+2 x^5+x^4+3 x^3+8 x^2+11 x+8$
- $y^2=6 x^6+10 x^5+8 x^4+12 x^3+10 x^2+10 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13^{2}}$.
Endomorphism algebra over $\F_{13}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-7})\). |
The base change of $A$ to $\F_{13^{2}}$ is 1.169.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.13.a_ac | $4$ | (not in LMFDB) |