Properties

Label 2.29.c_bi
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 29 x^{2} )( 1 + 6 x + 29 x^{2} )$
  $1 + 2 x + 34 x^{2} + 58 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.378881058409$, $\pm0.688080637848$
Angle rank:  $2$ (numerical)
Jacobians:  $90$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $936$ $763776$ $594248616$ $501037056000$ $420566184193896$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $906$ $24368$ $708398$ $20504272$ $594746586$ $17250217408$ $500247800158$ $14507141839232$ $420707239160106$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The isogeny class factors as 1.29.ae $\times$ 1.29.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ak_de$2$(not in LMFDB)
2.29.ac_bi$2$(not in LMFDB)
2.29.k_de$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ak_de$2$(not in LMFDB)
2.29.ac_bi$2$(not in LMFDB)
2.29.k_de$2$(not in LMFDB)
2.29.aq_eo$4$(not in LMFDB)
2.29.ae_ac$4$(not in LMFDB)
2.29.e_ac$4$(not in LMFDB)
2.29.q_eo$4$(not in LMFDB)