Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$936$ |
$763776$ |
$594248616$ |
$501037056000$ |
$420566184193896$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$32$ |
$906$ |
$24368$ |
$708398$ |
$20504272$ |
$594746586$ |
$17250217408$ |
$500247800158$ |
$14507141839232$ |
$420707239160106$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):
- $y^2=11 x^6+15 x^5+4 x^4+4 x^3+6 x^2+27 x+20$
- $y^2=4 x^6+22 x^5+15 x^4+22 x^3+20 x^2+4 x$
- $y^2=10 x^5+11 x^4+19 x^3+5 x^2+27 x+10$
- $y^2=17 x^6+2 x^5+20 x^4+18 x^3+24 x^2+16 x+12$
- $y^2=11 x^6+x^5+27 x^4+7 x^3+10 x^2+27 x+22$
- $y^2=19 x^6+15 x^5+15 x^4+22 x^3+11 x^2+21 x+8$
- $y^2=22 x^6+24 x^5+7 x^4+9 x^3+28 x^2+12 x+20$
- $y^2=13 x^6+18 x^5+27 x^4+3 x^3+6 x^2+11 x+4$
- $y^2=11 x^6+22 x^5+19 x^3+22 x+11$
- $y^2=22 x^6+20 x^5+24 x^4+x^3+24 x^2+20 x+22$
- $y^2=22 x^6+22 x^5+11 x^4+4 x^3+x^2+14 x+19$
- $y^2=19 x^6+26 x^5+8 x^4+16 x^3+8 x^2+26 x+19$
- $y^2=x^6+14 x^5+11 x^4+24 x^3+2 x^2+26 x+9$
- $y^2=19 x^6+18 x^5+25 x^3+x^2+20 x+3$
- $y^2=19 x^6+10 x^5+14 x^3+12 x+14$
- $y^2=23 x^6+5 x^5+11 x^4+20 x^3+25 x^2+18 x+25$
- $y^2=9 x^6+17 x^5+16 x^4+18 x^3+x^2+14 x+22$
- $y^2=8 x^6+26 x^5+19 x^4+22 x^3+26 x^2+17 x+1$
- $y^2=6 x^6+18 x^5+22 x^4+19 x^3+3 x^2+28 x+12$
- $y^2=22 x^6+17 x^5+22 x^4+21 x^3+20 x+21$
- and 70 more
- $y^2=14 x^6+6 x^5+3 x^4+28 x^3+25 x^2+7 x+4$
- $y^2=7 x^6+28 x^5+19 x^3+14 x^2+25 x+15$
- $y^2=26 x^6+11 x^5+4 x^4+13 x^3+17 x^2+14 x$
- $y^2=16 x^6+x^5+7 x^4+13 x^3+5 x^2+2 x+3$
- $y^2=24 x^6+11 x^5+28 x^4+28 x^2+11 x+24$
- $y^2=8 x^6+17 x^5+27 x^3+14 x^2+20 x+7$
- $y^2=x^6+17 x^5+x^4+7 x^3+18 x^2+21 x+25$
- $y^2=8 x^6+20 x^5+2 x^4+5 x^3+13 x^2+22 x+5$
- $y^2=4 x^6+9 x^5+x^4+10 x^3+4 x^2+2 x+12$
- $y^2=24 x^6+24 x^5+3 x^4+22 x^2+19 x+4$
- $y^2=2 x^6+2 x^5+19 x^4+27 x^3+25 x^2+26 x$
- $y^2=5 x^6+12 x^4+26 x^3+21 x^2+3 x$
- $y^2=9 x^6+27 x^5+17 x^4+7 x^3+21 x^2+15 x+25$
- $y^2=3 x^6+7 x^4+22 x^3+5 x^2+27 x+21$
- $y^2=7 x^6+11 x^5+13 x^4+3 x^2+15 x+20$
- $y^2=18 x^6+3 x^5+x^4+5 x^3+19 x^2+9 x+12$
- $y^2=2 x^6+10 x^5+26 x^4+8 x^3+17 x^2+4 x+2$
- $y^2=19 x^6+8 x^5+21 x^4+27 x^3+13 x^2+23 x+20$
- $y^2=14 x^6+20 x^5+24 x^4+x^3+14 x^2+2 x+3$
- $y^2=21 x^6+7 x^4+28 x^3+27 x^2+9 x+28$
- $y^2=11 x^6+4 x^5+22 x^4+2 x^3+8 x^2+16 x+19$
- $y^2=24 x^6+13 x^5+x^4+4 x^3+21 x^2+25 x+12$
- $y^2=4 x^6+11 x^5+9 x^4+9 x^3+8 x^2+12 x+16$
- $y^2=4 x^6+12 x^5+26 x^4+4 x^3+x^2+10$
- $y^2=21 x^6+3 x^5+26 x^4+13 x^3+x^2+26 x+8$
- $y^2=20 x^6+4 x^5+x^4+27 x^3+19 x^2+25 x+3$
- $y^2=5 x^6+8 x^5+19 x^4+27 x^3+9 x^2+13 x+28$
- $y^2=24 x^6+3 x^5+2 x^4+7 x^3+2 x^2+3 x+6$
- $y^2=3 x^6+27 x^5+4 x^3+27 x+3$
- $y^2=23 x^6+19 x^5+4 x^4+26 x^3+11 x^2+27 x+3$
- $y^2=2 x^6+20 x^5+7 x^4+4 x^3+7 x^2+20 x+2$
- $y^2=27 x^6+24 x^5+11 x^4+19 x^3+27 x^2+16 x+17$
- $y^2=19 x^6+26 x^5+11 x^4+22 x^3+19 x^2+7 x+6$
- $y^2=16 x^6+25 x^5+26 x^4+11 x^3+12 x^2+5 x+21$
- $y^2=16 x^6+4 x^5+22 x^4+8 x^3+22 x^2+4 x+16$
- $y^2=19 x^6+26 x^5+24 x^4+2 x^3+7 x^2+16 x+1$
- $y^2=8 x^6+19 x^5+10 x^4+5 x^3+10 x^2+19 x+8$
- $y^2=8 x^5+8 x^4+10 x^3+8 x^2+15 x+13$
- $y^2=22 x^6+20 x^5+20 x^4+12 x^3+24 x^2+23 x+6$
- $y^2=6 x^6+26 x^5+10 x^4+21 x^3+16 x^2+8 x+24$
- $y^2=19 x^6+21 x^5+26 x^4+17 x^3+26 x^2+21 x+19$
- $y^2=x^6+18 x^5+21 x^4+18 x^3+12 x^2+9 x+4$
- $y^2=10 x^6+19 x^5+2 x^4+25 x^3+8 x^2+16$
- $y^2=11 x^6+24 x^5+26 x^4+x^3+21 x^2+16 x+26$
- $y^2=15 x^6+3 x^5+18 x^4+x^3+18 x^2+3 x+15$
- $y^2=25 x^6+2 x^5+19 x^4+28 x^3+7 x^2+13 x+27$
- $y^2=17 x^6+27 x^5+17 x^4+16 x^3+17 x^2+27 x+17$
- $y^2=21 x^6+19 x^5+6 x^4+10 x^3+16 x^2+28 x+27$
- $y^2=15 x^6+23 x^5+9 x^4+11 x^3+4 x^2+26 x+8$
- $y^2=19 x^6+10 x^5+22 x^4+14 x^3+21 x^2+23 x+14$
- $y^2=4 x^6+27 x^5+8 x^4+11 x^3+x^2+11 x+13$
- $y^2=4 x^6+13 x^5+21 x^4+26 x^3+7 x^2+6 x+18$
- $y^2=9 x^6+3 x^5+13 x^4+14 x^3+13 x^2+3 x+9$
- $y^2=23 x^6+6 x^5+21 x^4+16 x^3+17 x^2+11 x+4$
- $y^2=7 x^6+14 x^5+16 x^4+19 x^3+2 x^2+17 x+23$
- $y^2=13 x^6+8 x^5+8 x^4+8 x^3+12 x^2+4 x+16$
- $y^2=8 x^6+7 x^5+27 x^4+15 x^3+15 x^2+24 x+18$
- $y^2=25 x^6+24 x^5+17 x^4+5 x^3+5 x^2+2 x+9$
- $y^2=4 x^6+13 x^5+2 x^4+19 x^3+10 x^2+6 x+7$
- $y^2=25 x^6+9 x^5+28 x^4+11 x^3+23 x^2+22 x+20$
- $y^2=18 x^6+x^5+18 x^4+8 x^3+16 x^2+x+22$
- $y^2=28 x^6+26 x^5+19 x^4+23 x^3+19 x^2+26 x+28$
- $y^2=2 x^5+5 x^4+17 x^3+4 x^2+11 x+2$
- $y^2=5 x^6+28 x^5+x^4+23 x^3+20 x^2+27 x+8$
- $y^2=9 x^6+5 x^5+20 x^4+24 x^3+6 x^2+28 x+7$
- $y^2=18 x^6+27 x^5+4 x^4+2 x^3+22 x$
- $y^2=8 x^6+6 x^5+x^4+14 x^3+12 x^2+7 x+20$
- $y^2=16 x^6+22 x^5+12 x^4+12 x^3+24 x^2+2 x+9$
- $y^2=9 x^6+4 x^5+8 x^4+14 x^3+6 x^2+3 x+4$
- $y^2=19 x^6+28 x^5+25 x^4+3 x^3+19 x+1$
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$
| The isogeny class factors as 1.29.ae $\times$ 1.29.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists