Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 46 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.331385102054$, $\pm0.668614897946$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-35})\) |
Galois group: | $C_2^2$ |
Jacobians: | $404$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2256$ | $5089536$ | $10779007824$ | $23833767776256$ | $52599132489043536$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2302$ | $103824$ | $4884286$ | $229345008$ | $10778800318$ | $506623120464$ | $23811295582078$ | $1119130473102768$ | $52599132742257022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 404 curves (of which all are hyperelliptic):
- $y^2=5 x^6+10 x^4+10 x^3+23 x+24$
- $y^2=25 x^6+3 x^4+3 x^3+21 x+26$
- $y^2=21 x^6+6 x^5+16 x^4+24 x^3+13 x^2+8 x+11$
- $y^2=34 x^6+5 x^5+29 x^4+6 x^3+4 x^2+36 x+41$
- $y^2=41 x^6+22 x^5+45 x^4+4 x^3+24 x^2+19 x+28$
- $y^2=31 x^6+15 x^5+11 x^4+41 x^3+15 x^2+44 x+34$
- $y^2=19 x^6+20 x^5+30 x^4+3 x^3+11 x^2+7 x+45$
- $y^2=x^6+6 x^5+9 x^4+15 x^3+8 x^2+35 x+37$
- $y^2=3 x^6+12 x^5+12 x^4+41 x^3+40 x^2+34 x+17$
- $y^2=15 x^6+13 x^5+13 x^4+17 x^3+12 x^2+29 x+38$
- $y^2=44 x^6+44 x^5+41 x^4+7 x^3+32 x^2+41 x+19$
- $y^2=32 x^6+32 x^5+17 x^4+35 x^3+19 x^2+17 x+1$
- $y^2=13 x^6+30 x^5+38 x^4+37 x^3+20 x^2+11 x+17$
- $y^2=18 x^6+9 x^5+2 x^4+44 x^3+6 x^2+8 x+38$
- $y^2=22 x^6+29 x^5+4 x^4+42 x^3+16 x^2+6 x+1$
- $y^2=16 x^6+4 x^5+20 x^4+22 x^3+33 x^2+30 x+5$
- $y^2=10 x^6+x^5+21 x^4+17 x^3+33 x^2+9 x+46$
- $y^2=3 x^6+5 x^5+11 x^4+38 x^3+24 x^2+45 x+42$
- $y^2=36 x^6+23 x^5+31 x^3+35 x+31$
- $y^2=4 x^6+24 x^5+46 x^4+10 x^3+15 x^2+23 x+20$
- and 384 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-35})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.bu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-105}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.a_abu | $4$ | (not in LMFDB) |
2.47.am_dr | $12$ | (not in LMFDB) |
2.47.m_dr | $12$ | (not in LMFDB) |