L(s) = 1 | + 2-s − 4-s − 3·8-s − 16-s − 2·25-s − 12·29-s + 12·31-s + 5·32-s + 12·37-s − 4·41-s + 6·49-s − 2·50-s − 12·58-s + 12·62-s + 7·64-s + 4·67-s + 12·74-s − 4·82-s − 8·83-s − 12·97-s + 6·98-s + 2·100-s − 8·101-s − 12·103-s + 8·107-s + 12·116-s − 11·121-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1/4·16-s − 2/5·25-s − 2.22·29-s + 2.15·31-s + 0.883·32-s + 1.97·37-s − 0.624·41-s + 6/7·49-s − 0.282·50-s − 1.57·58-s + 1.52·62-s + 7/8·64-s + 0.488·67-s + 1.39·74-s − 0.441·82-s − 0.878·83-s − 1.21·97-s + 0.606·98-s + 1/5·100-s − 0.796·101-s − 1.18·103-s + 0.773·107-s + 1.11·116-s − 121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.837933184\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.837933184\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.257835717554447702509996377195, −7.966843143564028815015951200767, −7.61824169768911989600687753248, −6.85713763099235549236560096642, −6.51350898621945894029384095171, −6.00608168727567737303919926617, −5.43840266214952900746837752147, −5.32481407480352457411323412128, −4.41855202323956480908532485126, −4.22553319983239249938991147891, −3.75494768892754773946124087377, −2.95816448772345611225967462056, −2.61948483359941673148206408677, −1.67704347899440921477501835861, −0.62162056746197416242969472493,
0.62162056746197416242969472493, 1.67704347899440921477501835861, 2.61948483359941673148206408677, 2.95816448772345611225967462056, 3.75494768892754773946124087377, 4.22553319983239249938991147891, 4.41855202323956480908532485126, 5.32481407480352457411323412128, 5.43840266214952900746837752147, 6.00608168727567737303919926617, 6.51350898621945894029384095171, 6.85713763099235549236560096642, 7.61824169768911989600687753248, 7.966843143564028815015951200767, 8.257835717554447702509996377195