Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 18 x^{2} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.273567915948$, $\pm0.726432084052$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{26}, \sqrt{-35})\) |
Galois group: | $C_2^2$ |
Jacobians: | $328$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3740$ | $13987600$ | $51520179260$ | $191904500761600$ | $713342912802393500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3758$ | $226982$ | $13860078$ | $844596302$ | $51519984158$ | $3142742836022$ | $191707267048798$ | $11694146092834142$ | $713342913941904398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 328 curves (of which all are hyperelliptic):
- $y^2=5 x^6+55 x^5+24 x^4+38 x^3+30 x$
- $y^2=10 x^6+49 x^5+48 x^4+15 x^3+60 x$
- $y^2=46 x^6+38 x^5+30 x^4+12 x^3+17 x^2+33 x+19$
- $y^2=31 x^6+15 x^5+60 x^4+24 x^3+34 x^2+5 x+38$
- $y^2=2 x^6+3 x^5+9 x^4+38 x^3+32 x^2+52 x+55$
- $y^2=4 x^6+6 x^5+18 x^4+15 x^3+3 x^2+43 x+49$
- $y^2=28 x^6+20 x^5+10 x^4+11 x^3+52 x^2+56 x+10$
- $y^2=56 x^6+40 x^5+20 x^4+22 x^3+43 x^2+51 x+20$
- $y^2=39 x^6+36 x^5+2 x^4+59 x^3+23 x^2+36 x+39$
- $y^2=17 x^6+11 x^5+4 x^4+57 x^3+46 x^2+11 x+17$
- $y^2=36 x^6+16 x^5+26 x^4+38 x^3+19 x^2+45 x+30$
- $y^2=14 x^6+14 x^4+9 x^3+29 x^2+19 x+29$
- $y^2=28 x^6+28 x^4+18 x^3+58 x^2+38 x+58$
- $y^2=59 x^6+5 x^5+43 x^4+59 x^3+60 x^2+42 x+56$
- $y^2=16 x^6+20 x^5+9 x^4+49 x^3+24 x^2+57 x+45$
- $y^2=32 x^6+40 x^5+18 x^4+37 x^3+48 x^2+53 x+29$
- $y^2=22 x^6+5 x^5+56 x^4+46 x^3+32 x^2+37 x+27$
- $y^2=44 x^6+10 x^5+51 x^4+31 x^3+3 x^2+13 x+54$
- $y^2=6 x^6+7 x^5+5 x^4+11 x^3+27 x^2+18 x+33$
- $y^2=12 x^6+14 x^5+10 x^4+22 x^3+54 x^2+36 x+5$
- and 308 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{26}, \sqrt{-35})\). |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.s 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-910}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.a_as | $4$ | (not in LMFDB) |