Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 114 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.107400302387$, $\pm0.892599697613$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{65})\) |
Galois group: | $C_2^2$ |
Jacobians: | $64$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5216$ | $27206656$ | $151334567264$ | $806327363977216$ | $4297625833738154336$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5102$ | $389018$ | $28393566$ | $2073071594$ | $151334908238$ | $11047398519098$ | $806460194554558$ | $58871586708267914$ | $4297625837772751022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=5 x^6+27 x^5+64 x^4+60 x^3+12 x^2+63 x+39$
- $y^2=35 x^6+50 x^5+54 x^4+9 x^3+16 x^2+9 x+52$
- $y^2=29 x^6+31 x^5+51 x^4+45 x^3+7 x^2+45 x+41$
- $y^2=54 x^6+20 x^5+13 x^4+40 x^3+15 x^2+47 x+54$
- $y^2=51 x^6+27 x^5+65 x^4+54 x^3+2 x^2+16 x+51$
- $y^2=23 x^6+59 x^5+7 x^4+68 x^3+44 x^2+9 x+60$
- $y^2=58 x^6+5 x^5+23 x^4+50 x^3+53 x^2+30 x+37$
- $y^2=64 x^6+62 x^5+52 x^4+5 x^3+62 x^2+70 x+27$
- $y^2=28 x^6+18 x^5+41 x^4+25 x^3+18 x^2+58 x+62$
- $y^2=31 x^6+18 x^5+40 x^4+11 x^3+36 x^2+28 x+24$
- $y^2=9 x^6+17 x^5+54 x^4+55 x^3+34 x^2+67 x+47$
- $y^2=x^6+48 x^5+15 x^4+57 x^3+52 x^2+66 x+52$
- $y^2=5 x^6+21 x^5+2 x^4+66 x^3+41 x^2+38 x+41$
- $y^2=21 x^6+67 x^5+63 x^4+33 x^3+17 x^2+24 x+5$
- $y^2=44 x^6+55 x^5+37 x^4+37 x^3+72 x^2+25 x+66$
- $y^2=26 x^6+69 x^5+13 x^4+29 x^3+37 x^2+19 x+50$
- $y^2=47 x^6+7 x^5+61 x^4+46 x^3+47 x+11$
- $y^2=16 x^6+35 x^5+13 x^4+11 x^3+16 x+55$
- $y^2=68 x^6+20 x^5+55 x^4+8 x^3+12 x^2+22 x+71$
- $y^2=48 x^6+27 x^5+56 x^4+40 x^3+60 x^2+37 x+63$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{65})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.aek 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-130}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.a_ek | $4$ | (not in LMFDB) |
2.73.ai_bg | $8$ | (not in LMFDB) |
2.73.i_bg | $8$ | (not in LMFDB) |