Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x^{2} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.223047491029$, $\pm0.776952508971$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{13}, \sqrt{-37})\) |
Galois group: | $C_2^2$ |
Jacobians: | $184$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7892$ | $62283664$ | $496981976852$ | $3938464143609856$ | $31181719921599882452$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $7862$ | $704970$ | $62772126$ | $5584059450$ | $496982662742$ | $44231334895530$ | $3936588610144318$ | $350356403707485210$ | $31181719913233581302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=3 x^6+77 x^5+70 x^4+70 x^3+10 x^2+18 x+38$
- $y^2=6 x^6+70 x^5+69 x^4+43 x^3+31 x^2+28 x+39$
- $y^2=62 x^6+20 x^5+60 x^4+77 x^3+69 x^2+54 x+40$
- $y^2=8 x^6+60 x^5+2 x^4+53 x^3+29 x^2+73 x+31$
- $y^2=78 x^6+26 x^5+48 x^4+67 x^3+69 x^2+4 x+83$
- $y^2=64 x^6+11 x^5+61 x^4+68 x^3+83 x^2+10 x+50$
- $y^2=14 x^6+33 x^5+5 x^4+26 x^3+71 x^2+30 x+61$
- $y^2=29 x^6+74 x^5+62 x^4+81 x^3+54 x^2+18 x+81$
- $y^2=87 x^6+44 x^5+8 x^4+65 x^3+73 x^2+54 x+65$
- $y^2=12 x^6+14 x^4+45 x^3+5 x^2+6 x+15$
- $y^2=51 x^6+x^5+28 x^4+31 x^3+43 x^2+40 x+31$
- $y^2=64 x^6+3 x^5+84 x^4+4 x^3+40 x^2+31 x+4$
- $y^2=50 x^6+78 x^5+37 x^4+6 x^3+19 x^2+5 x+18$
- $y^2=61 x^6+56 x^5+22 x^4+18 x^3+57 x^2+15 x+54$
- $y^2=62 x^6+26 x^5+65 x+78$
- $y^2=46 x^6+34 x^5+57 x^4+81 x^3+8 x^2+74 x+64$
- $y^2=78 x^6+2 x^5+84 x^4+49 x^3+14 x^2+27 x+21$
- $y^2=79 x^6+33 x^5+43 x^4+4 x^3+9 x^2+31 x+24$
- $y^2=71 x^6+34 x^4+58 x^3+27 x^2+65$
- $y^2=57 x^6+42 x^5+4 x^4+46 x^3+54 x^2+88 x+78$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{13}, \sqrt{-37})\). |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-481}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.a_be | $4$ | (not in LMFDB) |