Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 58 x^{2} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.342147405617$, $\pm0.657852594383$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-41})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $346$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2868$ | $8225424$ | $22164067476$ | $62295281565696$ | $174887470569761268$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2926$ | $148878$ | $7894990$ | $418195494$ | $22163773822$ | $1174711139838$ | $62259711812254$ | $3299763591802134$ | $174887470774009486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 346 curves (of which all are hyperelliptic):
- $y^2=52 x^6+46 x^5+22 x^4+21 x^3+50 x^2+46 x+6$
- $y^2=51 x^6+39 x^5+44 x^4+42 x^3+47 x^2+39 x+12$
- $y^2=36 x^6+22 x^5+44 x^4+18 x^3+28 x^2+14 x+11$
- $y^2=19 x^6+44 x^5+35 x^4+36 x^3+3 x^2+28 x+22$
- $y^2=7 x^6+38 x^5+17 x^4+39 x^3+27 x^2+28 x+31$
- $y^2=16 x^6+9 x^5+29 x^4+29 x^3+32 x^2+17 x+10$
- $y^2=32 x^6+18 x^5+5 x^4+5 x^3+11 x^2+34 x+20$
- $y^2=8 x^6+37 x^5+27 x^4+30 x^3+28 x^2+12 x+28$
- $y^2=50 x^6+9 x^5+26 x^4+28 x^3+32 x^2+3 x+40$
- $y^2=26 x^6+2 x^5+31 x^4+52 x^3+37 x^2+5 x+28$
- $y^2=16 x^6+22 x^5+43 x^4+12 x^3+21 x^2+26 x+21$
- $y^2=46 x^6+49 x^5+18 x^4+31 x^3+44 x^2+52 x+34$
- $y^2=46 x^6+48 x^5+20 x^4+50 x^3+12 x^2+3 x+7$
- $y^2=39 x^6+43 x^5+40 x^4+47 x^3+24 x^2+6 x+14$
- $y^2=13 x^6+27 x^5+7 x^4+29 x^3+4 x^2+15 x+25$
- $y^2=26 x^6+x^5+14 x^4+5 x^3+8 x^2+30 x+50$
- $y^2=12 x^6+41 x^5+33 x^4+4 x^3+10 x^2+9 x+17$
- $y^2=24 x^6+29 x^5+13 x^4+8 x^3+20 x^2+18 x+34$
- $y^2=13 x^6+43 x^5+27 x^4+14 x^3+36 x^2+47 x+38$
- $y^2=26 x^6+33 x^5+x^4+28 x^3+19 x^2+41 x+23$
- and 326 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-41})\). |
| The base change of $A$ to $\F_{53^{2}}$ is 1.2809.cg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.a_acg | $4$ | (not in LMFDB) |
| 2.53.am_dx | $12$ | (not in LMFDB) |
| 2.53.m_dx | $12$ | (not in LMFDB) |