L(s) = 1 | + 2·2-s − 2·3-s − 4-s − 5-s − 4·6-s + 4·7-s − 8·8-s + 3·9-s − 2·10-s − 11-s + 2·12-s + 13-s + 8·14-s + 2·15-s − 7·16-s + 7·17-s + 6·18-s + 5·19-s + 20-s − 8·21-s − 2·22-s + 9·23-s + 16·24-s + 5·25-s + 2·26-s − 4·27-s − 4·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s − 1/2·4-s − 0.447·5-s − 1.63·6-s + 1.51·7-s − 2.82·8-s + 9-s − 0.632·10-s − 0.301·11-s + 0.577·12-s + 0.277·13-s + 2.13·14-s + 0.516·15-s − 7/4·16-s + 1.69·17-s + 1.41·18-s + 1.14·19-s + 0.223·20-s − 1.74·21-s − 0.426·22-s + 1.87·23-s + 3.26·24-s + 25-s + 0.392·26-s − 0.769·27-s − 0.755·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.128361833\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.128361833\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71664719470439907982455456655, −10.25686230924135372493712638361, −9.641400645933961367031416152900, −9.256516654006790789099899823358, −8.761801377996032898760240387270, −8.517386252248213674045446723527, −7.66496762347149062531864431830, −7.61580381688073259430506696342, −6.95882026092662170420232701332, −6.37965005436199603192150657154, −5.66117751432999274631941959346, −5.25199765680923410594787632849, −5.12609412827779148469881583415, −5.10618832614173302001877096546, −4.07715706766751645728375828985, −3.95100402296586704630565668414, −3.29205084061689595667561593473, −2.71294935819919177906305180503, −1.31299507869879350274697563132, −0.75857181276723355620098909606,
0.75857181276723355620098909606, 1.31299507869879350274697563132, 2.71294935819919177906305180503, 3.29205084061689595667561593473, 3.95100402296586704630565668414, 4.07715706766751645728375828985, 5.10618832614173302001877096546, 5.12609412827779148469881583415, 5.25199765680923410594787632849, 5.66117751432999274631941959346, 6.37965005436199603192150657154, 6.95882026092662170420232701332, 7.61580381688073259430506696342, 7.66496762347149062531864431830, 8.517386252248213674045446723527, 8.761801377996032898760240387270, 9.256516654006790789099899823358, 9.641400645933961367031416152900, 10.25686230924135372493712638361, 10.71664719470439907982455456655