Properties

Label 4-739328-1.1-c1e2-0-9
Degree $4$
Conductor $739328$
Sign $1$
Analytic cond. $47.1401$
Root an. cond. $2.62028$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 21·9-s − 4·11-s + 6·17-s + 2·19-s − 10·25-s − 54·27-s + 24·33-s − 24·41-s − 16·43-s − 13·49-s − 36·51-s − 12·57-s + 10·59-s − 14·67-s + 2·73-s + 60·75-s + 108·81-s − 12·83-s − 8·89-s − 12·97-s − 84·99-s − 10·107-s + 4·113-s − 10·121-s + 144·123-s + 127-s + ⋯
L(s)  = 1  − 3.46·3-s + 7·9-s − 1.20·11-s + 1.45·17-s + 0.458·19-s − 2·25-s − 10.3·27-s + 4.17·33-s − 3.74·41-s − 2.43·43-s − 1.85·49-s − 5.04·51-s − 1.58·57-s + 1.30·59-s − 1.71·67-s + 0.234·73-s + 6.92·75-s + 12·81-s − 1.31·83-s − 0.847·89-s − 1.21·97-s − 8.44·99-s − 0.966·107-s + 0.376·113-s − 0.909·121-s + 12.9·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(739328\)    =    \(2^{11} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(47.1401\)
Root analytic conductor: \(2.62028\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{739328} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 739328,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47536575646542499937872009352, −7.34354802745880252390609982428, −6.61303503651954034437075836396, −6.48093639487009967007655018620, −5.91824238738469752095279165720, −5.40675236139494372245760564830, −5.22289133265133441977616849928, −5.05677384969689549249862504577, −4.39011552338323920878309071486, −3.69177683782741766976501946645, −3.11827862407422559284554596552, −1.71114737147421549133826699879, −1.37942708011457790071691730372, 0, 0, 1.37942708011457790071691730372, 1.71114737147421549133826699879, 3.11827862407422559284554596552, 3.69177683782741766976501946645, 4.39011552338323920878309071486, 5.05677384969689549249862504577, 5.22289133265133441977616849928, 5.40675236139494372245760564830, 5.91824238738469752095279165720, 6.48093639487009967007655018620, 6.61303503651954034437075836396, 7.34354802745880252390609982428, 7.47536575646542499937872009352

Graph of the $Z$-function along the critical line