Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 89 x^{2} )^{2}$ |
| $1 + 8 x + 194 x^{2} + 712 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.567997546099$, $\pm0.567997546099$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $60$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 47$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8836$ | $65351056$ | $495568129156$ | $3935283749785600$ | $31183182579809491396$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $98$ | $8246$ | $702962$ | $62721438$ | $5584321378$ | $496982094806$ | $44231308368562$ | $3936588840267838$ | $350356405930122338$ | $31181719917999282806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=72 x^6+48 x^5+25 x^4+66 x^3+55 x^2+65 x+81$
- $y^2=33 x^5+20 x^4+88 x^2+7 x+74$
- $y^2=65 x^6+67 x^5+20 x^4+75 x^3+13 x^2+18 x+4$
- $y^2=76 x^6+71 x^5+73 x^4+61 x^3+88 x^2+80 x+13$
- $y^2=8 x^6+15 x^5+68 x^4+62 x^3+45 x^2+28 x+55$
- $y^2=52 x^6+83 x^5+45 x^4+48 x^3+64 x^2+19 x+10$
- $y^2=x^6+39 x^5+76 x^4+10 x^3+59 x^2+78 x+49$
- $y^2=41 x^6+74 x^5+72 x^4+66 x^3+66 x^2+21 x+26$
- $y^2=x^6+77 x^5+57 x^4+41 x^3+16 x^2+57 x+45$
- $y^2=40 x^6+20 x^5+79 x^4+8 x^3+17 x^2+40 x+42$
- $y^2=46 x^6+8 x^5+24 x^4+41 x^3+47 x^2+36 x+2$
- $y^2=86 x^6+17 x^5+31 x^4+42 x^3+31 x^2+17 x+86$
- $y^2=57 x^6+22 x^5+78 x^4+88 x^3+30 x^2+6 x+87$
- $y^2=15 x^6+10 x^5+18 x^4+88 x^3+29 x^2+53 x+79$
- $y^2=11 x^6+45 x^5+23 x^4+74 x^3+14 x^2+44 x+78$
- $y^2=40 x^6+72 x^5+86 x^4+71 x^3+15 x^2+18 x+60$
- $y^2=28 x^6+4 x^5+49 x^4+24 x^3+49 x^2+4 x+28$
- $y^2=36 x^6+75 x^5+20 x^4+54 x^3+20 x^2+75 x+36$
- $y^2=29 x^6+76 x^5+84 x^4+18 x^3+8 x^2+7 x+16$
- $y^2=35 x^6+4 x^5+39 x^4+52 x^3+25 x^2+23 x+18$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-85}) \)$)$ |
Base change
This is a primitive isogeny class.