Properties

Label 4-72e3-1.1-c1e2-0-23
Degree $4$
Conductor $373248$
Sign $-1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·11-s − 16·17-s + 4·19-s − 9·25-s − 12·41-s − 4·43-s − 5·49-s − 8·59-s − 20·67-s + 2·73-s − 22·83-s + 12·89-s − 2·97-s + 18·107-s − 12·113-s + 53·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + ⋯
L(s)  = 1  + 3.01·11-s − 3.88·17-s + 0.917·19-s − 9/5·25-s − 1.87·41-s − 0.609·43-s − 5/7·49-s − 1.04·59-s − 2.44·67-s + 0.234·73-s − 2.41·83-s + 1.27·89-s − 0.203·97-s + 1.74·107-s − 1.12·113-s + 4.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) 2.5.a_j
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.7.a_f
11$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \) 2.11.ak_bv
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.a_k
17$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.17.q_du
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.19.ae_bq
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.23.a_bq
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.a_w
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.31.a_n
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.37.a_bm
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.41.m_eo
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.43.e_dm
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.47.a_cg
53$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.53.a_dd
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.59.i_fe
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.61.a_cg
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.67.u_ja
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.a_da
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \) 2.73.ac_fr
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.79.a_adu
83$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \) 2.83.w_lb
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.89.am_ig
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.97.c_hn
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.554704477910262490194224105907, −8.224236138838626236588097788287, −7.25448367711369655898353657421, −7.05717799238262722068269243873, −6.55960464539303925130968330201, −6.23138020629374792100300833919, −5.90728495331563131351841280691, −4.71525232702415007486392238194, −4.67787935460078313498836162326, −3.89814181993739315556342397740, −3.74514947909231141400939990651, −2.80179600302493653223083598111, −1.76559844837423464517024482336, −1.64081961055094255152301138209, 0, 1.64081961055094255152301138209, 1.76559844837423464517024482336, 2.80179600302493653223083598111, 3.74514947909231141400939990651, 3.89814181993739315556342397740, 4.67787935460078313498836162326, 4.71525232702415007486392238194, 5.90728495331563131351841280691, 6.23138020629374792100300833919, 6.55960464539303925130968330201, 7.05717799238262722068269243873, 7.25448367711369655898353657421, 8.224236138838626236588097788287, 8.554704477910262490194224105907

Graph of the $Z$-function along the critical line