L(s) = 1 | + 10·11-s − 16·17-s + 4·19-s − 9·25-s − 12·41-s − 4·43-s − 5·49-s − 8·59-s − 20·67-s + 2·73-s − 22·83-s + 12·89-s − 2·97-s + 18·107-s − 12·113-s + 53·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + ⋯ |
L(s) = 1 | + 3.01·11-s − 3.88·17-s + 0.917·19-s − 9/5·25-s − 1.87·41-s − 0.609·43-s − 5/7·49-s − 1.04·59-s − 2.44·67-s + 0.234·73-s − 2.41·83-s + 1.27·89-s − 0.203·97-s + 1.74·107-s − 1.12·113-s + 4.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.554704477910262490194224105907, −8.224236138838626236588097788287, −7.25448367711369655898353657421, −7.05717799238262722068269243873, −6.55960464539303925130968330201, −6.23138020629374792100300833919, −5.90728495331563131351841280691, −4.71525232702415007486392238194, −4.67787935460078313498836162326, −3.89814181993739315556342397740, −3.74514947909231141400939990651, −2.80179600302493653223083598111, −1.76559844837423464517024482336, −1.64081961055094255152301138209, 0,
1.64081961055094255152301138209, 1.76559844837423464517024482336, 2.80179600302493653223083598111, 3.74514947909231141400939990651, 3.89814181993739315556342397740, 4.67787935460078313498836162326, 4.71525232702415007486392238194, 5.90728495331563131351841280691, 6.23138020629374792100300833919, 6.55960464539303925130968330201, 7.05717799238262722068269243873, 7.25448367711369655898353657421, 8.224236138838626236588097788287, 8.554704477910262490194224105907