L(s) = 1 | − 2·13-s − 8·23-s + 2·25-s + 2·37-s − 8·47-s − 49-s + 2·61-s + 16·71-s − 6·73-s − 16·83-s − 6·97-s − 16·107-s + 12·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 19·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 0.554·13-s − 1.66·23-s + 2/5·25-s + 0.328·37-s − 1.16·47-s − 1/7·49-s + 0.256·61-s + 1.89·71-s − 0.702·73-s − 1.75·83-s − 0.609·97-s − 1.54·107-s + 1.14·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.46·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.352431509173052435555840185299, −8.017495690621158276147905660496, −7.66904806947982597090713034703, −6.97982181306480047165065335560, −6.68429233484490626952056621788, −6.09863946529523077632152584819, −5.64067682367067562482091701438, −5.09943682224705208760613508941, −4.57270145412342547366264869625, −4.02178856133546181592510380165, −3.49382481358562834607248388200, −2.72839452354597333286176939418, −2.17551363884229321652769590106, −1.33628557789555324912287167886, 0,
1.33628557789555324912287167886, 2.17551363884229321652769590106, 2.72839452354597333286176939418, 3.49382481358562834607248388200, 4.02178856133546181592510380165, 4.57270145412342547366264869625, 5.09943682224705208760613508941, 5.64067682367067562482091701438, 6.09863946529523077632152584819, 6.68429233484490626952056621788, 6.97982181306480047165065335560, 7.66904806947982597090713034703, 8.017495690621158276147905660496, 8.352431509173052435555840185299