Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 54 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.164927406649$, $\pm0.835072593351$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{10}, \sqrt{-13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $46$ |
Isomorphism classes: | 168 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2756$ | $7595536$ | $22164658724$ | $62302353657856$ | $174887469987500036$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2702$ | $148878$ | $7895886$ | $418195494$ | $22164956318$ | $1174711139838$ | $62259707371678$ | $3299763591802134$ | $174887469609487022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=6 x^6+30 x^5+21 x^4+50 x^3+15 x^2+26 x+6$
- $y^2=43 x^6+x^5+45 x^4+10 x^3+11 x^2+11 x+11$
- $y^2=46 x^6+16 x^5+21 x^4+48 x^3+48 x^2+35 x+8$
- $y^2=39 x^6+32 x^5+42 x^4+43 x^3+43 x^2+17 x+16$
- $y^2=40 x^6+14 x^5+21 x^3+19 x+21$
- $y^2=33 x^6+51 x^5+17 x^4+47 x^3+4 x^2+8 x+11$
- $y^2=13 x^6+49 x^5+34 x^4+41 x^3+8 x^2+16 x+22$
- $y^2=33 x^6+45 x^5+16 x^4+41 x^3+48 x^2+34 x+43$
- $y^2=37 x^6+24 x^5+30 x^4+43 x^3+49 x^2+40 x+33$
- $y^2=45 x^6+14 x^5+45 x^4+36 x^3+42 x^2+48 x+38$
- $y^2=36 x^6+2 x^5+23 x^4+39 x^3+13 x^2+40 x+29$
- $y^2=40 x^6+3 x^5+10 x^4+30 x^2+34 x+44$
- $y^2=15 x^6+33 x^5+43 x^4+13 x^3+14 x^2+51 x+4$
- $y^2=37 x^6+37 x^5+20 x^4+26 x^3+46 x^2+15 x+8$
- $y^2=41 x^6+29 x^5+49 x^4+24 x^3+16 x^2+18 x+43$
- $y^2=29 x^6+5 x^5+45 x^4+48 x^3+32 x^2+36 x+33$
- $y^2=22 x^6+20 x^5+48 x^4+22 x^3+42 x^2+12 x+46$
- $y^2=41 x^6+x^5+6 x^4+34 x^3+12 x^2+4 x+18$
- $y^2=20 x^6+41 x^5+21 x^4+39 x^3+40 x^2+21 x+4$
- $y^2=32 x^6+30 x^5+15 x^4+42 x^3+29 x^2+37 x+18$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{10}, \sqrt{-13})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.acc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-130}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_cc | $4$ | (not in LMFDB) |