Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 73 x^{2} )( 1 + 11 x + 73 x^{2} )$ |
$1 + 6 x + 91 x^{2} + 438 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.405478609088$, $\pm0.722612475433$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $240$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5865$ | $29190105$ | $151291944720$ | $806631918093225$ | $4297372105198194825$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $5476$ | $388910$ | $28404292$ | $2072949200$ | $151333679374$ | $11047410864080$ | $806460088961668$ | $58871586494255870$ | $4297625828761892836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=54 x^6+65 x^5+44 x^4+41 x^3+43 x^2+26 x+44$
- $y^2=68 x^6+47 x^5+61 x^4+54 x^3+2 x^2+34 x+17$
- $y^2=56 x^6+61 x^5+25 x^4+65 x^3+67 x^2+64 x+12$
- $y^2=23 x^6+62 x^5+33 x^4+54 x^3+33 x^2+37 x+47$
- $y^2=12 x^6+71 x^5+57 x^4+52 x^3+56 x^2+12 x+30$
- $y^2=35 x^6+32 x^5+27 x^4+31 x^3+22 x^2+35 x+1$
- $y^2=60 x^6+4 x^5+4 x^4+60 x^3+32 x^2+4 x+14$
- $y^2=27 x^6+33 x^5+60 x^4+56 x^3+69 x^2+4 x+27$
- $y^2=5 x^6+9 x^5+40 x^4+69 x^3+72 x^2+38 x+71$
- $y^2=17 x^6+16 x^5+27 x^4+62 x^3+5 x^2+60 x+61$
- $y^2=30 x^6+70 x^4+34 x^3+20 x^2+22 x+40$
- $y^2=57 x^6+54 x^5+68 x^4+19 x^3+21 x^2+42 x+27$
- $y^2=63 x^6+17 x^5+24 x^4+44 x^3+16 x^2+52 x+70$
- $y^2=13 x^6+24 x^5+64 x^4+46 x^3+60 x^2+51 x+26$
- $y^2=34 x^6+62 x^5+69 x^4+4 x^3+33 x+11$
- $y^2=57 x^6+71 x^5+54 x^4+29 x^3+35 x^2+3 x+71$
- $y^2=10 x^6+20 x^5+36 x^4+15 x^3+70 x^2+7 x+69$
- $y^2=37 x^6+9 x^5+39 x^4+55 x^3+36 x^2+56 x+46$
- $y^2=37 x^6+43 x^5+61 x^4+42 x^3+15 x^2+63 x+58$
- $y^2=40 x^6+51 x^5+17 x^4+61 x^3+27 x^2+63 x+25$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.af $\times$ 1.73.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aq_ht | $2$ | (not in LMFDB) |
2.73.ag_dn | $2$ | (not in LMFDB) |
2.73.q_ht | $2$ | (not in LMFDB) |