Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 61 x^{2} )( 1 + 5 x + 61 x^{2} )$ |
$1 - 2 x + 87 x^{2} - 122 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.352090495177$, $\pm0.603713893500$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3685$ | $14493105$ | $51553680640$ | $191709358025625$ | $713356084903367125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3892$ | $227130$ | $13845988$ | $844611900$ | $51519778342$ | $3142739754060$ | $191707360046788$ | $11694146324309250$ | $713342909874316852$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=2 x^6+5 x^5+2 x^4+27 x^3+32 x^2+60 x+18$
- $y^2=21 x^6+57 x^5+42 x^4+47 x^3+32 x+15$
- $y^2=12 x^6+32 x^5+6 x^4+41 x^3+28 x^2+13 x+5$
- $y^2=59 x^6+24 x^5+36 x^4+14 x^3+50 x^2+20 x+45$
- $y^2=18 x^6+25 x^5+43 x^4+5 x^3+48 x^2+6 x+53$
- $y^2=x^6+6 x^5+37 x^4+25 x^3+37 x^2+3 x+60$
- $y^2=31 x^6+22 x^4+48 x^3+51 x^2+41 x+23$
- $y^2=53 x^6+18 x^5+32 x^4+13 x^3+33 x^2+54 x+50$
- $y^2=53 x^6+2 x^5+47 x^4+36 x^3+19 x^2+36 x+52$
- $y^2=38 x^6+48 x^5+24 x^4+19 x^3+13 x^2+2 x+13$
- $y^2=48 x^6+29 x^5+37 x^4+22 x^3+15 x^2+9 x+52$
- $y^2=x^6+x^5+42 x^4+34 x^3+47 x^2+4 x+18$
- $y^2=21 x^6+23 x^5+39 x^4+22 x^3+13 x^2+17 x+35$
- $y^2=53 x^6+40 x^5+2 x^4+37 x^3+38 x^2+22 x+36$
- $y^2=35 x^6+9 x^5+27 x^4+4 x^3+2 x^2+20 x+20$
- $y^2=30 x^6+2 x^5+34 x^4+54 x^3+48 x^2+42 x+50$
- $y^2=29 x^6+43 x^5+14 x^4+55 x^3+41 x^2+4 x+20$
- $y^2=34 x^6+27 x^5+42 x^4+40 x^3+9 x^2+4 x+35$
- $y^2=43 x^6+52 x^5+40 x^4+31 x^3+31 x^2+14 x+40$
- $y^2=24 x^6+30 x^5+22 x^4+7 x^3+54 x^2+53 x+19$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ah $\times$ 1.61.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.am_gb | $2$ | (not in LMFDB) |
2.61.c_dj | $2$ | (not in LMFDB) |
2.61.m_gb | $2$ | (not in LMFDB) |