Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 30 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.190388534029$, $\pm0.809611465971$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{7}, \sqrt{-13})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $70$ |
| Isomorphism classes: | 200 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1652$ | $2729104$ | $4750228532$ | $7998850994176$ | $13422659088923252$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1622$ | $68922$ | $2830686$ | $115856202$ | $4750352822$ | $194754273882$ | $7984924409278$ | $327381934393962$ | $13422658867694102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=14 x^6+3 x^5+4 x^4+17 x^3+x^2+35 x+17$
- $y^2=40 x^6+21 x^5+32 x^4+29 x^3+22 x^2+23 x+38$
- $y^2=35 x^6+3 x^5+28 x^4+10 x^3+9 x^2+15 x+23$
- $y^2=16 x^6+37 x^5+18 x^4+27 x^3+23 x^2+25 x+5$
- $y^2=14 x^6+17 x^5+26 x^4+39 x^3+15 x^2+27 x+30$
- $y^2=29 x^6+24 x^5+10 x^4+18 x^3+36 x^2+18 x+15$
- $y^2=38 x^6+19 x^5+14 x^4+29 x^3+25 x^2+22 x+29$
- $y^2=14 x^6+27 x^5+23 x^4+12 x^3+4 x^2+14 x+3$
- $y^2=2 x^6+39 x^5+15 x^4+31 x^3+24 x^2+2 x+18$
- $y^2=19 x^6+19 x^5+7 x^4+28 x^3+33 x^2+29 x+2$
- $y^2=28 x^6+22 x^5+30 x^4+25 x^3+4 x^2+29 x+33$
- $y^2=22 x^6+x^5+40 x^4+4 x^3+30 x^2+39 x+8$
- $y^2=19 x^6+14 x^5+16 x^4+16 x^3+10 x^2+10 x+27$
- $y^2=5 x^6+14 x^5+2 x^4+4 x^3+26 x^2+29 x+38$
- $y^2=37 x^6+x^5+5 x^4+17 x^3+35 x^2+18 x+9$
- $y^2=40 x^5+29 x^4+40 x^3+13 x^2+33 x+11$
- $y^2=4 x^6+9 x^5+35 x^4+21 x^3+31 x^2+25 x+17$
- $y^2=28 x^6+33 x^5+19 x^4+37 x^3+36 x^2+38 x+40$
- $y^2=4 x^6+34 x^5+32 x^4+17 x^3+11 x^2+23 x+35$
- $y^2=7 x^5+12 x^4+9 x^3+5 x^2+22 x$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-13})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.a_be | $4$ | (not in LMFDB) |